Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Filtros adicionais











Intervalo de ano
1.
Artigo em Inglês | MEDLINE | ID: mdl-31318182

RESUMO

BACKGROUND: Cancer cachexia represents a central obstacle in medical oncology as it is associated with poor therapy response and reduced overall survival. Systemic inflammation is considered to be a key driver of cancer cachexia; however, clinical studies with anti-inflammatory drugs failed to show distinct cachexia-inhibiting effects. To address this contradiction, we investigated the functional importance of innate immune cells for hepatocellular carcinoma (HCC)-associated cachexia. METHODS: A transgenic HCC mouse model was intercrossed with mice harbouring a defect in myeloid cell-mediated inflammation. Body composition of mice was analysed via nuclear magnetic resonance spectroscopy and microcomputed tomography. Quantitative PCR was used to determine adipose tissue browning and polarization of adipose tissue macrophages. The activation state of distinct areas of the hypothalamus was analysed via immunofluorescence. Multispectral immunofluorescence imaging and immunoblot were applied to characterize sympathetic neurons and macrophages in visceral adipose tissue. Quantification of pro-inflammatory cytokines in mouse serum was performed with a multiplex immunoassay. Visceral adipose tissue of HCC patients was quantified via the L3 index of computed tomography scans obtained during routine clinical care. RESULTS: We identified robust cachexia in the HCC mouse model as evidenced by a marked loss of visceral fat and lean mass. Computed tomography-based analyses demonstrated that a subgroup of human HCC patients displays reduced visceral fat mass, complementing the murine data. While the myeloid cell-mediated inflammation defect resulted in reduced expression of pro-inflammatory cytokines in the serum of HCC-bearing mice, this unexpectedly did not translate into diminished but rather enhanced cachexia-associated fat loss. Defective myeloid cell-mediated inflammation was associated with decreased macrophage abundance in visceral adipose tissue, suggesting a role for local macrophages in the regulation of cancer-induced fat loss. CONCLUSIONS: Myeloid cell-mediated inflammation displays a rather unexpected beneficial function in a murine HCC model. These results demonstrate that immune cells are capable of protecting the host against cancer-induced tissue wasting, adding a further layer of complexity to the pathogenesis of cachexia and providing a potential explanation for the contradictory results of clinical studies with anti-inflammatory drugs.

2.
Cardiovasc Ultrasound ; 17(1): 7, 2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31010431

RESUMO

Echocardiography is the most commonly applied technique for non-invasive assessment of cardiac function in small animals. Manual tracing of endocardial borders is time consuming and varies with operator experience. Therefore, we aimed to evaluate a novel automated two-dimensional software algorithm (Auto2DE) for small animals and compare it to the standard use of manual 2D-echocardiographic assessment (2DE). We hypothesized that novel Auto2DE will provide rapid and robust data sets, which are in agreement with manually assessed data of animals.2DE and Auto2DE were carried out using a high-resolution imaging-system for small animals. First, validation cohorts of mouse and rat cine loops were used to compare Auto2DE against 2DE. These data were stratified for image quality by a blinded expert in small animal imaging. Second, we evaluated 2DE and Auto2DE in four mouse models and four rat models with different cardiac pathologies.Automated assessment of LV function by 2DE was faster than conventional 2DE analysis and independent of operator experience levels. The accuracy of Auto2DE-assessed data in healthy mice was dependent on cine loop quality, with excellent agreement between Auto2DE and 2DE in cine loops with adequate quality. Auto2DE allowed for valid detection of impaired cardiac function in animal models with pronounced cardiac phenotypes, but yielded poor performance in diabetic animal models independent of image quality.Auto2DE represents a novel automated analysis tool for rapid assessment of LV function, which is suitable for data acquisition in studies with good and very good echocardiographic image quality, but presents systematic problems in specific pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA