Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Syst Biol ; 68(6): 918-936, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188455


Processes leading to spectacular diversity of both form and species on islands have been well-documented under island biogeography theory, where distance from source and island size are key factors determining immigration and extinction resistance. But far less understood are the processes governing in situ diversification on the world's mega islands, where large and isolated land masses produced morphologically distinct radiations from related taxa on continental regions. Madagascar has long been recognized as a natural laboratory due to its isolation, lack of influence from adjacent continents, and diversification of spectacular vertebrate radiations. However, only a handful of studies have examined rate shifts of in situ diversification for this island. Here, we examine rates of diversification in the Malagasy snakes of the family Pseudoxyrhophiinae (gemsnakes) to understand if rates of speciation were initially high, enhanced by diversification into distinct biomes, and associated with key dentition traits. Using a genomic sequence-capture data set for 366 samples, we determine that all previously described and newly discovered species are delimitable and therefore useful candidates for understanding diversification trajectories through time. Our analysis detected no shifts in diversification rate between clades or changes in biome or dentition type. Remarkably, we demonstrate that rates of diversification of the gemsnake radiation, which originated in Madagascar during the early Miocene, remained steady throughout the Neogene. However, we do detect a significant slowdown in diversification during the Pleistocene. We also comment on the apparent paradox where most living species originated in the Pleistocene, despite diversification rates being substantially higher during the earlier 15 myr.

Biodiversidade , Filogenia , Serpentes/classificação , Animais , Especiação Genética , Madagáscar , Serpentes/anatomia & histologia
Genome Biol Evol ; 7(3): 706-19, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25663487


Sequence capture and restriction site associated DNA sequencing (RADseq) are popular methods for obtaining large numbers of loci for phylogenetic analysis. These methods are typically used to collect data at different evolutionary timescales; sequence capture is primarily used for obtaining conserved loci, whereas RADseq is designed for discovering single nucleotide polymorphisms (SNPs) suitable for population genetic or phylogeographic analyses. Phylogenetic questions that span both "recent" and "deep" timescales could benefit from either type of data, but studies that directly compare the two approaches are lacking. We compared phylogenies estimated from sequence capture and double digest RADseq (ddRADseq) data for North American phrynosomatid lizards, a species-rich and diverse group containing nine genera that began diversifying approximately 55 Ma. Sequence capture resulted in 584 loci that provided a consistent and strong phylogeny using concatenation and species tree inference. However, the phylogeny estimated from the ddRADseq data was sensitive to the bioinformatics steps used for determining homology, detecting paralogs, and filtering missing data. The topological conflicts among the SNP trees were not restricted to any particular timescale, but instead were associated with short internal branches. Species tree analysis of the largest SNP assembly, which also included the most missing data, supported a topology that matched the sequence capture tree. This preferred phylogeny provides strong support for the paraphyly of the earless lizard genera Holbrookia and Cophosaurus, suggesting that the earless morphology either evolved twice or evolved once and was subsequently lost in Callisaurus.

Lagartos/classificação , Filogenia , Análise de Sequência de DNA/métodos , Animais , Enzimas de Restrição do DNA , Genômica , Lagartos/genética