Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
Cell Rep ; 35(1): 108955, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826894

RESUMO

Trained immunity (TI) is a de facto innate immune memory program induced in monocytes/macrophages by exposure to pathogens or vaccines, which evolved as protection against infections. TI is characterized by immunometabolic changes and histone post-translational modifications, which enhance production of pro-inflammatory cytokines. As aberrant activation of TI is implicated in inflammatory diseases, tight regulation is critical; however, the mechanisms responsible for this modulation remain elusive. Interleukin-37 (IL-37) is an anti-inflammatory cytokine that curbs inflammation and modulates metabolic pathways. In this study, we show that administration of recombinant IL-37 abrogates the protective effects of TI in vivo, as revealed by reduced host pro-inflammatory responses and survival to disseminated candidiasis. Mechanistically, IL-37 reverses the immunometabolic changes and histone post-translational modifications characteristic of TI in monocytes, thus suppressing cytokine production in response to infection. IL-37 thereby emerges as an inhibitor of TI and as a potential therapeutic target in immune-mediated pathologies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33713408

RESUMO

CONTEXT: Lymphopenia is a key feature of immune dysfunction in patients with bacterial sepsis and COVID-19 and associated with poor clinical outcomes, but the cause is largely unknown. Severely ill patients may present with thyroid function abnormalities, so-called non-thyroidal illness syndrome (NTIS), and several studies have linked TSH and the thyroid hormones thyroxine (T4) and triiodothyronine (T3) to homeostatic regulation and function of lymphocyte populations. PURPOSE: To test the hypothesis that abnormal thyroid function correlates with lymphopenia in patients with severe infections. METHODS: Retrospective analysis of absolute lymphocyte counts, circulating TSH, T4, free T4 (FT4), T3, albumin and inflammatory biomarkers was performed in two independent hospitalized study populations: bacterial sepsis (n=224) and COVID-19 patients (n=161). A subgroup analysis was performed in patients with severe lymphopenia and normal lymphocyte counts. RESULTS: Only T3 significantly correlated (rho=0.252) with lymphocyte counts in patients with bacterial sepsis and lower concentrations were found in severe lymphopenic compared to non-lympopenic patients (n=56 per group). Severe lymphopenic COVID-19 patients (n=17) showed significantly lower plasma concentrations of TSH, T4, FT4 and T3 compared to patients without lymphopenia (n=18), and demonstrated significantly increased values of the inflammatory markers interleukin-6, C-reactive protein and ferritin. Remarkably, after one week follow-up, the majority (12/15) of COVID-19 patients showed quantitative recovery of their lymphocyte numbers, while TSH and thyroid hormones remained mainly disturbed. CONCLUSION: Abnormal thyroid function correlates with lymphopenia in patients with severe infections, like bacterial sepsis and COVID-19, but future studies need to establish whether a causal relationship is involved.

3.
Med (N Y) ; 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33649749

RESUMO

Age is a key risk factor associated with the severity of symptoms caused by SARS-CoV-2, and there is an urgent need to reduce COVID-19 morbidity and mortality in elderly individuals. We discuss evidence suggesting that trained immunity elicited by BCG vaccination may improve immune responses and can serve as a strategy to combat COVID-19 in this population.

4.
Sci Adv ; 7(10)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33674313

RESUMO

Immunotherapies controlling the adaptive immune system are firmly established, but regulating the innate immune system remains much less explored. The intrinsic interactions between nanoparticles and phagocytic myeloid cells make these materials especially suited for engaging the innate immune system. However, developing nanotherapeutics is an elaborate process. Here, we demonstrate a modular approach that facilitates efficiently incorporating a broad variety of drugs in a nanobiologic platform. Using a microfluidic formulation strategy, we produced apolipoprotein A1-based nanobiologics with favorable innate immune system-engaging properties as evaluated by in vivo screening. Subsequently, rapamycin and three small-molecule inhibitors were derivatized with lipophilic promoieties, ensuring their seamless incorporation and efficient retention in nanobiologics. A short regimen of intravenously administered rapamycin-loaded nanobiologics (mTORi-NBs) significantly prolonged allograft survival in a heart transplantation mouse model. Last, we studied mTORi-NB biodistribution in nonhuman primates by PET/MR imaging and evaluated its safety, paving the way for clinical translation.

5.
Sci Transl Med ; 13(584)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692130

RESUMO

Macrophages play a central role in the pathogenesis of atherosclerosis. The inflammatory properties of these cells are dictated by their metabolism, of which the mechanistic target of rapamycin (mTOR) signaling pathway is a key regulator. Using myeloid cell-specific nanobiologics in apolipoprotein E-deficient (Apoe -/-) mice, we found that targeting the mTOR and ribosomal protein S6 kinase-1 (S6K1) signaling pathways rapidly diminished plaque macrophages' inflammatory activity. By investigating transcriptome modifications, we identified Psap, a gene encoding the lysosomal protein prosaposin, as closely related with mTOR signaling. Subsequent in vitro experiments revealed that Psap inhibition suppressed both glycolysis and oxidative phosphorylation. Transplantation of Psap -/- bone marrow to low-density lipoprotein receptor knockout (Ldlr -/-) mice led to a reduction in atherosclerosis development and plaque inflammation. Last, we confirmed the relationship between PSAP expression and inflammation in human carotid atherosclerotic plaques. Our findings provide mechanistic insights into the development of atherosclerosis and identify prosaposin as a potential therapeutic target.

6.
Microb Pathog ; 154: 104864, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33771629

RESUMO

Paracoccidioidomycosis (PCM) is a systemic fungal disease caused by Paracoccidioides spp., whose clinical outcome depends on immune response. Interleukin 32 (IL-32) is a cytokine present in inflammatory and infectious diseases, including bacterial, virus and protozoan infections. Its role in fungal disease remains unclear. The axis IL-15, IL-32 and vitamin D leads to microbicidal capacity against intracellular pathogens. Thus, the aims of this study were to investigate the production of IL-32 during Paracoccidioides spp. infection and whether this cytokine and IL-15 can increase P. brasiliensis control in a vitamin D dependent manner. IL-32 was highly detected in oral lesions from patients with PCM. In addition, high production of this cytokine was intracellularly detected in peripheral blood mononuclear cells (PBMCs) from healthy donors after exposure to particulated P. brasiliensis antigens (PbAg). The IL-32γ isoform was predominantly expressed, but there was mRNA alternative splicing for IL-32α isoform. The induction of IL-32 was dependent on Dectin-1 receptor. Infection of PBMCs with P. brasiliensis yeasts did not significantly induce IL-32 production even after activation with exogenous IFN-γ or IL-15 treatments. Although IL-15 was a potent inducer of IL-32 production, treatment with this cytokine did not increase the fungal control unless vitamin D was present in high levels. In this case, both IL-15 and IL-32 increased fungicidal activity of PBMCs. Together, data showed that IL-32 is present in lesions of PCM, PbAg induces IL-32, and the axis of IL-15/IL-32/vitamin D can contribute to control fungal infection. The data suggest that exposure to molecules from P. brasiliensis, as ß-glucans, is needed to induce IL-32 production since only heat-killed and sonicated P. brasiliensis yeasts were able to increase IL-32, which was blocked by anti-Dectin-1 antibodies. This is the first description about IL-15/IL-32/vitamin D pathway role in P. brasiliensis infection.

7.
Proc Natl Acad Sci U S A ; 118(10)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649199

RESUMO

Interleukin-1ß (IL-1ß)-mediated inflammation suppresses antitumor immunity, leading to the generation of a tumor-permissive environment, tumor growth, and progression. Here, we demonstrate that nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in melanoma is linked to IL-1ß production, inflammation, and immunosuppression. Analysis of cancer genome datasets (TCGA and GTEx) revealed greater NLRP3 and IL-1ß expression in cutaneous melanoma samples (n = 469) compared to normal skin (n = 324), with a highly significant correlation between NLRP3 and IL-1ß (P < 0.0001). We show the formation of the NLRP3 inflammasome in biopsies of metastatic melanoma using fluorescent resonance energy transfer analysis for NLRP3 and apoptosis-associated speck-like protein containing a CARD. In vivo, tumor-associated NLRP3/IL-1 signaling induced expansion of myeloid-derived suppressor cells (MDSCs), leading to reduced natural killer and CD8+ T cell activity concomitant with an increased presence of regulatory T (Treg) cells in the primary tumors. Either genetic or pharmacological inhibition of tumor-derived NLRP3 by dapansutrile (OLT1177) was sufficient to reduce MDSCs expansion and to enhance antitumor immunity, resulting in reduced tumor growth. Additionally, we observed that the combination of NLRP3 inhibition and anti-PD-1 treatment significantly increased the antitumor efficacy of the monotherapy by limiting MDSC-mediated T cell suppression and tumor progression. These data show that NLRP3 activation in melanoma cells is a protumor mechanism, which induces MDSCs expansion and immune evasion. We conclude that inhibition of NLRP3 can augment the efficacy of anti-PD-1 therapy.

8.
J Leukoc Biol ; 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33620105

RESUMO

Trained immunity is the acquisition of a hyperresponsive phenotype by innate immune cells (such as monocytes and macrophages) after an infection or vaccination, a de facto nonspecific memory dependent on epigenetic and metabolic reprogramming of these cells. We have recently shown that induction of trained immunity is dependent on IL-1ß. Here, we show that recombinant IL-38, an anti-inflammatory cytokine of the IL-1-family, was able to induce long-term inhibitory changes and reduce the induction of trained immunity by ß-glucan in vivo in C57BL/6 mice and ex vivo in their bone marrow cells. IL-38 blocked mTOR signaling and prevented the epigenetic and metabolic changes induced by ß-glucan. In healthy subjects, the IL1F10 associated single nucleotide polymorphism rs58965312 correlated with higher plasma IL-38 concentrations and reduced induction of trained immunity by ß-glucan ex vivo. These results indicate that IL-38 induces long-term anti-inflammatory changes and also inhibits the induction of trained immunity. Recombinant IL-38 could therefore potentially be used as a therapeutic intervention for diseases characterized by exacerbated trained immunity.

9.
J Infect Dis ; 223(8): 1322-1333, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33524124

RESUMO

The clinical spectrum of COVID-19 varies and the differences in host response characterizing this variation have not been fully elucidated. COVID-19 disease severity correlates with an excessive proinflammatory immune response and profound lymphopenia. Inflammatory responses according to disease severity were explored by plasma cytokine measurements and proteomics analysis in 147 COVID-19 patients. Furthermore, peripheral blood mononuclear cell cytokine production assays and whole blood flow cytometry were performed. Results confirm a hyperinflammatory innate immune state, while highlighting hepatocyte growth factor and stem cell factor as potential biomarkers for disease severity. Clustering analysis revealed no specific inflammatory endotypes in COVID-19 patients. Functional assays revealed abrogated adaptive cytokine production (interferon-γ, interleukin-17, and interleukin-22) and prominent T-cell exhaustion in critically ill patients, whereas innate immune responses were intact or hyperresponsive. Collectively, this extensive analysis provides a comprehensive insight into the pathobiology of severe to critical COVID-19 and highlights potential biomarkers of disease severity.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Idoso , Biomarcadores/sangue , /virologia , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologia , Citocinas/imunologia , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/virologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Linfopenia/sangue , Linfopenia/imunologia , Linfopenia/virologia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
10.
J Neuroinflammation ; 18(1): 57, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618716

RESUMO

BACKGROUND: An innate immune memory response can manifest in two ways: immune training and immune tolerance, which refers to an enhanced or suppressed immune response to a second challenge, respectively. Exposing monocytes to moderate-to-high amounts of bacterial lipopolysaccharide (LPS) induces immune tolerance, whereas fungal ß-glucan (BG) induces immune training. In microglia, it has been shown that different LPS inocula in vivo can induce either immune training or tolerance. Few studies focused on impact of BG on microglia and were only performed in vitro. The aim of the current study was to determine whether BG activates and induces immune memory in microglia upon peripheral administration in vivo. METHODS: Two experimental designs were used. In the acute design, mice received an intraperitoneal (i.p.) injection with PBS, 1 mg/kg LPS or 20 mg/kg BG and were terminated after 3 h, 1 or 2 days. In the preconditioning design, animals were first challenged i.p. with PBS, 1 mg/kg LPS or 20 mg/kg BG. After 2, 7 or 14 days, mice received a second injection with PBS or 1 mg/kg LPS and were sacrificed 3 h later. Microglia were isolated by fluorescence-activated cell sorting, and cytokine gene expression levels were determined. In addition, a self-developed program was used to analyze microglia morphological changes. Cytokine concentrations in serum were determined by a cytokine array. RESULTS: Microglia exhibited a classical inflammatory response to LPS, showing significant upregulation of Tnf, Il6, Il1ß, Ccl2, Ccl3 and Csf1 expression, three h after injection, and obvious morphological changes 1 and 2 days after injection. With an interval of 2 days between two challenges, both BG and LPS induced immune training in microglia. The training effect of LPS changed into immune tolerance after a 7-day interval between 2 LPS challenges. Preconditioning with BG and LPS resulted in increased morphological changes in microglia in response to a systemic LPS challenge compared to naïve microglia. CONCLUSIONS: Our results demonstrate that preconditioning with BG and LPS both induced immune training of microglia at two days after the first challenge. However, with an interval of 7 days between the first and second challenge, LPS-preconditioning resulted in immune tolerance in microglia.

11.
Nat Immunol ; 22(3): 287-300, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33574617

RESUMO

Sub-Saharan Africa currently experiences an unprecedented wave of urbanization, which has important consequences for health and disease patterns. This study aimed to investigate and integrate the immune and metabolic consequences of rural or urban lifestyles and the role of nutritional changes associated with urban living. In a cohort of 323 healthy Tanzanians, urban as compared to rural living was associated with a pro-inflammatory immune phenotype, both at the transcript and protein levels. We identified different food-derived and endogenous circulating metabolites accounting for these differences. Serum from urban dwellers induced reprogramming of innate immune cells with higher tumor necrosis factor production upon microbial re-stimulation in an in vitro model of trained immunity. These data demonstrate important shifts toward an inflammatory phenotype associated with an urban lifestyle and provide new insights into the underlying dietary and metabolic factors, which may affect disease epidemiology in sub-Sahara African countries.


Assuntos
Citocinas/sangue , Dieta Saudável , Metabolismo Energético , Imunidade Inata , Mediadores da Inflamação/sangue , Saúde da População Rural , Saúde da População Urbana , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Citocinas/genética , Metabolismo Energético/genética , Feminino , Humanos , Imunidade Inata/genética , Masculino , Metaboloma , Pessoa de Meia-Idade , Estado Nutricional , Valor Nutritivo , Comportamento de Redução do Risco , Estações do Ano , Tanzânia , Transcriptoma , Fator de Necrose Tumoral alfa/sangue , Urbanização , Adulto Jovem
12.
Annu Rev Immunol ; 39: 667-693, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637018

RESUMO

Traditionally, the innate and adaptive immune systems are differentiated by their specificity and memory capacity. In recent years, however, this paradigm has shifted: Cells of the innate immune system appear to be able to gain memory characteristics after transient stimulation, resulting in an enhanced response upon secondary challenge. This phenomenon has been called trained immunity. Trained immunity is characterized by nonspecific increased responsiveness, mediated via extensive metabolic and epigenetic reprogramming. Trained immunity explains the heterologous effects of vaccines, which result in increased protection against secondary infections. However, in chronic inflammatory conditions, trained immunity can induce maladaptive effects and contribute to hyperinflammation and progression of cardiovascular disease, autoinflammatory syndromes, and neuroinflammation. In this review we summarize the current state of the field of trained immunity, its mechanisms, and its roles in both health and disease.

13.
Immunology ; 2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33454989

RESUMO

The endocrine and the immune systems interact by sharing receptors for hormones and cytokines, cross-control and feedback mechanisms. To date, no comprehensive study has assessed the impact of thyroid hormones on immune homeostasis. By studying immune phenotype (cell populations, antibody concentrations, circulating cytokines, adipokines and acute-phase proteins, monocyte-platelet interactions and cytokine production capacity) in two large independent cohorts of healthy volunteers of Western European descent from the Human Functional Genomics Project (500FG and 300BCG cohorts), we identified a crucial role of the thyroid hormone thyroxin (T4) and thyroid-stimulating hormone (TSH) on the homeostasis of lymphocyte populations. TSH concentrations were strongly associated with multiple populations of both effector and regulatory T cells, whereas B-cell populations were significantly associated with free T4 (fT4). In contrast, fT4 and TSH had little impact on myeloid cell populations and cytokine production capacity. Mendelian randomization further supported the role of fT4 for lymphocyte homeostasis. Subsequently, using a genomics approach, we identified genetic variants that influence both fT4 and TSH concentrations and immune responses, and gene set enrichment pathway analysis showed enrichment of fT4-affected gene expression in B-cell function pathways, including the CD40 pathway, further supporting the importance of fT4 in the regulation of B-cell function. In conclusion, we show that thyroid function controls the homeostasis of the lymphoid cell compartment. These findings improve our understanding of the immune responses and open the door for exploring and understanding the role of thyroid hormones in the lymphocyte function during disease.

14.
Ticks Tick Borne Dis ; 12(2): 101611, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33360386

RESUMO

Antigen presentation is a crucial innate immune cell function that instructs adaptive immune cells. Loss of this pathway severely impairs the development of adaptive immune responses. To investigate whether B. burgdorferi sensu lato. spirochetes modulate the induction of an effective immune response, primary human PBMCs were isolated from healthy volunteers and stimulated with B. burgdorferi s.l. Through cell entry, TNF receptor I, and RIP1 signaling cascades, B. burgdorferi s.l. strongly downregulated genes and proteins involved in antigen presentation, specifically HLA-DM, MHC class II and CD74. Antigen presentation proteins were distinctively inhibited in monocyte subsets, monocyte-derived macrophages, and dendritic cells. When compared to a range of other pathogens, B. burgdorferi s.l.-induced suppression of antigen presentation appears to be specific. Inhibition of antigen presentation interfered with T-cell recognition of B. burgdorferi s.l., and memory T-cell responses against Candidaalbicans. Re-stimulation of PBMCs with the commensal microbe C.albicans following B. burgdorferi s.l. exposure resulted in significantly reduced IFN-γ, IL-17 and IL-22 production. These findings may explain why patients with Lyme borreliosis develop delayed adaptive immune responses. Unravelling the mechanism of B. burgdorferi s.l.-induced inhibition of antigen presentation, via cell entry, TNF receptor I, and RIP1 signaling cascades, explains the difficulty to diagnose the disease based on serology and to obtain an effective vaccine against Lyme borreliosis.

15.
Cytokine ; 137: 155334, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33128926

RESUMO

Interleukin (IL)-38 belongs to the IL-1 family and is part of the IL-36 subfamily due to its binding to the IL-36 Receptor (IL-1R6). In the current study, we assessed the anti-inflammatory properties of IL-38 in murine models of arthritis and systemic inflammation. First, the anti-inflammatory properties of mouse and human IL-38 precursors were compared to forms with a truncated N-terminus. In mouse bone marrow derived dendritic cells (BMDC), human and mouse IL-38 precursors with a truncation of the two N-terminal amino acids (3-152) suppressed LPS-induced IL-6. Recombinant human IL-38 (3-152) was further investigated for its immunomodulatory potential using four murine models of inflammatory disease: streptococcal cell wall (SCW)-induced arthritis, monosodium urate (MSU) crystal-induced arthritis, MSU crystal-induced peritonitis, and systemic endotoxemia. In each of these models IL-38 significantly reduced inflammation. In SCW and MSU crystal-induced arthritis, joint swelling, inflammatory cell influx, and synovial levels of IL-1ß, IL-6, and KC were reduced by 50% or greater. These suppressive properties of IL-38 in SCW-induced arthritis were independent of the anti-inflammatory co-receptor IL-1R8, as IL-38 reduced arthritis equally in IL-1R8 deficient and WT mice. In MSU crystal-induced peritonitis, IL-38 reduced hypothermia, while plasma IL-6 and KC and peritoneal KC levels were reduced by 65-70%. In the LPS endotoxemia model, IL-38 pretreatment reduced systemic IL-6, TNFα and KC. Furthermore, in ex vivo cultured bone marrow, LPS-induced IL-6, TNFα and KC were reduced by 75-90%. Overall, IL-38 exhibits broad anti-inflammatory properties in models of systemic and local inflammation and therefore may be an effective cytokine therapy.

18.
Immunity ; 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33220235

RESUMO

The last few years have witnessed an increasing body of evidence that challenges the traditional view that immunological memory is an exclusive trait of the adaptive immune system. Myeloid cells can show increased responsiveness upon subsequent stimulation with the same or a different stimulus, well after the initial challenge. This de facto innate immune memory has been termed "trained immunity" and is involved in infections, vaccination and inflammatory diseases. Trained immunity is based on two main pillars: the epigenetic and metabolic reprogramming of cells. In this review we discuss the latest insights into the epigenetic mechanisms behind the induction of trained immunity, as well as the role of different cellular metabolites and metabolic networks in the induction, regulation and maintenance of trained immunity.

19.
J Transl Med ; 18(1): 448, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243243

RESUMO

BACKGROUND: Q fever fatigue syndrome (QFS) is characterised by a state of prolonged fatigue that is seen in 20% of acute Q fever infections and has major health-related consequences. The molecular mechanisms underlying QFS are largely unclear. In order to better understand its pathogenesis, we applied a multi-omics approach to study the patterns of the gut microbiome, blood metabolome, and inflammatory proteome of QFS patients, and compared these with those of chronic fatigue syndrome (CFS) patients and healthy controls (HC). METHODS: The study population consisted of 31 QFS patients, 50 CFS patients, and 72 HC. All subjects were matched for age, gender, and general geographical region (South-East part of the Netherlands). The gut microbiome composition was assessed by Metagenomic sequencing using the Illumina HiSeq platform. A total of 92 circulating inflammatory markers were measured using Proximity Extension Essay and 1607 metabolic features were assessed with a high-throughput non-targeted metabolomics approach. RESULTS: Inflammatory markers, including 4E-BP1 (P = 9.60-16 and 1.41-7) and MMP-1 (P = 7.09-9 and 3.51-9), are significantly more expressed in both QFS and CFS patients compared to HC. Blood metabolite profiles show significant differences when comparing QFS (319 metabolites) and CFS (441 metabolites) patients to HC, and are significantly enriched in pathways like sphingolipid (P = 0.0256 and 0.0033) metabolism. When comparing QFS to CFS patients, almost no significant differences in metabolome were found. Comparison of microbiome taxonomy of QFS and CFS patients with that of HC, shows both in- and decreases in abundancies in Bacteroidetes (with emphasis on Bacteroides and Alistiples spp.), and Firmicutes and Actinobacteria (with emphasis on Ruminococcus and Bifidobacterium spp.). When we compare QFS patients to CFS patients, there is a striking resemblance and hardly any significant differences in microbiome taxonomy are found. CONCLUSIONS: We show that QFS and CFS patients are similar across three different omics layers and 4E-BP1 and MMP-1 have the potential to distinguish QFS and CFS patients from HC.

20.
Cell Rep ; 33(7): 108387, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33207187

RESUMO

The tuberculosis vaccine bacillus Calmette-Guérin (BCG) protects against some heterologous infections, probably via induction of non-specific innate immune memory in monocytes and natural killer (NK) cells, a process known as trained immunity. Recent studies have revealed that the induction of trained immunity is associated with a bias toward granulopoiesis in bone marrow hematopoietic progenitor cells, but it is unknown whether BCG vaccination also leads to functional reprogramming of mature neutrophils. Here, we show that BCG vaccination of healthy humans induces long-lasting changes in neutrophil phenotype, characterized by increased expression of activation markers and antimicrobial function. The enhanced function of human neutrophils persists for at least 3 months after vaccination and is associated with genome-wide epigenetic modifications in trimethylation at histone 3 lysine 4. Functional reprogramming of neutrophils by the induction of trained immunity might offer novel therapeutic strategies in clinical conditions that could benefit from modulation of neutrophil effector function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...