RESUMO
Recently, there has been increasing interest in electrochemical printed sensors for a wide range of applications such as biomedical, pharmaceutical, food safety, and environmental fields. A major challenge is to obtain selective, sensitive, and reliable sensing platforms that can meet the stringent performance requirements of these application areas. Two-dimensional (2D) nanomaterials advances have accelerated the performance of electrochemical sensors towards more practical approaches. This review discusses the recent development of electrochemical printed sensors, with emphasis on the integration of non-carbon 2D materials as sensing platforms. A brief introduction to printed electrochemical sensors and electrochemical technique analysis are presented in the first section of this review. Subsequently, sensor surface functionalization and modification techniques including drop-casting, electrodeposition, and printing of functional ink are discussed. In the next section, we review recent insights into novel fabrication methodologies, electrochemical techniques, and sensors' performances of the most used transition metal dichalcogenides materials (such as MoS2, MoSe2, and WS2), MXenes, and hexagonal boron-nitride (hBN). Finally, the challenges that are faced by electrochemical printed sensors are highlighted in the conclusion. This review is not only useful to provide insights for researchers that are currently working in the related area, but also instructive to the ones new to this field.
Assuntos
Técnicas Biossensoriais , Nanoestruturas , Elementos de Transição , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodosRESUMO
Tetracycline (TC) antibiotic removal from water bodies is important to provide clean water and sanitation. Mesoporous graphitic carbon nitride (GCN) photocatalyst derived from three different types of precursors manages to remove TC effectively under visible light irradiation. Among urea, thiourea, and melamine precursors, melamine-prepared GCN (MGCN) via thermal polymerization has the highest efficiency to photodegrade tetracycline (TC) antibiotics up to 99.5% (0.0122 min-1) within 240 min. The COD for TC removal by using MGCN was up to 77.5% after 240 min of degradation. This is due to the slow charge recombination and rapid charge carrier migration. The MGCN encounters different properties such as high crystallinity, dense structure allowing fast charges migration, and nitrogen vacancies that create a defect state that suppresses charge recombination. It was found that the conduction band (CB) of MGCN was located at a more negative position (ECB = -0.33 V) than (O2/O2â¢-) and the valence band (VB) was placed at a more positive position (EVB = 2.30 V) than (H2O/OHâ¢), which allows generation of both radicals for photodegradation. Based on the cell viability test, the photodegraded TC in the water how non-toxicity toward Balb/c 3T3 cells after being irradiated (λ > 420 nm) for 240 min under visible light. The MGCN prepared in this study demonstrated the highest effectiveness and recyclable photocatalyst for the removal of TC among all GCNs.
Assuntos
Nitrilas , Tetraciclina , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Catálise , Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Grafite , Camundongos , Nitrilas/química , Nitrogênio , Compostos de Nitrogênio , Fotólise , Tetraciclina/farmacologia , Tioureia , Ureia/química , ÁguaRESUMO
In recent years, researchers have proven that the employment of natural green components in the biogenesis of nanoparticles from microalgae species is one of the ways to delight the global environment issues. The application of nanotechnology with the exploitation of phycochemical produced from algae species is known as 'phyconanotechnology'. The use of biological compounds by microalgae as reducing agents for the synthesis of inorganic nanoparticles has shown promising results such as cost-effective and environmentally friendly. Different classifications of algae such as brown algae, red algae, green algae, and cyanobacteria are studied for the synthesis of different types of metal nanoparticles. It is also an important motive to acknowledge the mechanisms of the microalgae-mediated biosynthesis of nanoparticles via an intracellular pathway or extracellular pathway. Besides, microalgae species as biogenic sources preclude the use of conventional methods reagents, such as sodium borohydride (NaBH4) and N,N-dimethylformamide (DMF), which further consolidates their position as the best choice for sustainable (economically and environmentally) nanoparticle synthesis compared to the conventional nanoparticles synthesis pathway.
Assuntos
Cianobactérias , Nanopartículas Metálicas , Microalgas , Cianobactérias/metabolismo , Nanopartículas Metálicas/química , Microalgas/metabolismo , Nanotecnologia/métodos , PlantasRESUMO
We report herein the design and synthesis of colloidally-stable S/Ag1.93S nanoparticles, their photothermal conversion properties and in vitro cytotoxicity toward A431 skin cancer cells under the excitation of a minimally-invasive 980 nm near-infrared (NIR) laser. Micron-sized S particles were first synthesized via acidifying Na2S2O3 using biocompatible sodium alginate as a surfactant. In the presence of AgNO3 and under rapid microwave-induced heating, alginate reduced AgNO3 to nascent Ag which reacted with molten S in situ forming S/Ag1.93S nanoparticles. The nanoparticles were characterized using a combination of X-ray diffraction, electron microscopies, elemental analysis, zeta-potential analysis and UV-VIS-NIR spectroscopy. The average particles size was controlled between 40 and 60 nm by fixing the mole ratio of Ag+:S2O32-. When excited by a 980 nm laser, S/Ag1.93S nanoparticles (~40 nm) produced with the least amount of AgNO3 exhibited a respectable photothermal conversion efficiency of circa 62% with the test aqueous solution heated to a hyperthermia-inducing 52 °C in 15 min. At 0.7 W/cm2, the viability of A431 skin cancer cells incubated with 7.0 ± 0.2 µg/mL of S/Ag1.93S nanoparticles reduced to 14 ± 0.6%, while an A431 cell control maintained an 80% cell viability. These results suggested that S/Ag1.93S nanoparticles may have good potential in reducing metastatic skin carcinoma.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias Cutâneas , Alginatos , Humanos , Raios Infravermelhos , Lasers , Nanopartículas Metálicas/química , Nanopartículas/química , Fototerapia/métodosRESUMO
Textile dyeing wastewater becomes one of the root causes of environmental pollution. Titanium dioxide (TiO2) is one of the photocatalysts that shows prominent organic dye photodegradation ability. In this study, a porous tungsten oxide (WO3)/TiO2 composite was prepared through ultrasonic-assisted solvothermal technique with varying amounts of WO3 ranging from 0.25 to 5 weight % (wt.%). The prepared 0.50 wt.% WO3/TiO2 (0.50WTi) composite exhibited the highest photodegradation activity (4.39 × 10-2 min-1) and complete mineralization in chemical oxygen demand (COD) reading towards 30 mg.L-1 of Reactive Black 5 (RB5) dye under 60 min of light irradiation. Effects of large surface area, small crystallite size, high pore volume and size, and low electron-hole pair recombination rate attributed to the superiority of 0.50WTi. Besides, 0.50WTi could be reused, showing 86.50% of RB5 photodegradation at the fifth cycle. Scavenger study demonstrated that photogenerated hole (h+) was the main active species of 0.50WTi to initiate the RB5 photodegradation. Cytotoxicity assessment determined the readings of half-maximal inhibitory concentration (IC50) were 1 mg.mL-1 and 0.61 mg.mL-1 (24 and 72 h of incubations) for the 0.50WTi composite.
Assuntos
Nanocompostos , Titânio , Catálise , Naftalenossulfonatos , FotóliseRESUMO
A highly mesoporous graphitic carbon nitride g-C3N4 (GCN) has been produced by a template-free method and effectively photodegrade tetracycline (TC) antibiotic under solar light irradiation. The mesoporous GCN (GCN-500) greatly improves the photoactivity (0.0247 min-1) by 2.13 times, as compared to that of bulk GCN (0.0116 min-1). The efficiently strengthened photoactivity is ascribed to the high porosity (117.05 m2/g), and improves the optical absorption under visible light (Eg = 2.65 eV) and good charge carrier separation efficiency. The synthesized mesoporous GCN shows a uniform pore size (~3 nm) distribution. GCN-500 shows large pore volume (0.210 cm3/g) compared to GCN-B (0.083 cm3/g). Besides, the GCN-500 also exhibits good recyclability and photostability for TC photodegradation. In conclusion, GCN-500 is a recyclable photocatalyst for the removal of TC under visible light irradiation.
RESUMO
Tetracycline (TC), a popularly found drug pollutant, can be contaminated in food and aquatic regions and causes a severe impact on human health. In this research, a visible light active p-stannic oxide/n-copper manganate (p-SnO2/n-CuMnO2) heterojunction was synthesized and has been applied for a signal on photoelectrochemical sensing of antibiotic TC. Firstly, the n-SnO2 microrods were synthesized via a simple and efficient homogeneous precipitation method and the p-CuMnO2 nanoparticles were synthesized by a facile ultrasound-assisted hydrothermal method. The SnO2/CuMnO2 microrods p-n heterojunction was prepared through a simple impregnation method and physicochemical properties of the microrods are characterized by using X-ray diffraction (XRD), Raman, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), UV-Vis diffuse reflectance spectroscopy (UVDRS), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Mott-Schottky analyses. The photoelectrochemical sensing performance of SnO2/CuMnO2 microrods was 2.7 times higher than that of as-synthesized pure SnO2 microrods is due to the more visible light absorption ability and p-n heterojunction (synergy). The designed SnO2/CuMnO2/ITO sensor gives photocurrent signals for the detection of TC in the range of 0.01-1000 µM with the detection limit (LOD) of 5.6 nM. The practical applicability of the sensor was monitored in cow milk and the Taipei River water sample.
Assuntos
Cobre , Compostos de Estanho , Antibacterianos , Catálise , HumanosRESUMO
Recent trend to recover value-added products from wastewater calls for more effective pre-treatment technology. Conventional landfill leachate treatment is often complex and thus causes negative environmental impacts and financial burden. In order to facilitate downstream processing of leachate wastewater for production of energy or value-added products, it is pertinent to maximize leachate treatment performance by using simple yet effective technology that removes pollutants with minimum chemical added into the wastewater that could potentially affect downstream processing. Hence, the optimization of coagulation-flocculation leachate treatment using multivariate approach is crucial. Central composite design was applied to optimize operating parameters viz. Alum dosage, pH and mixing speed. Quadratic model indicated that the optimum COD removal of 54% is achieved with low alum dosage, pH and mixing speed of 750 mgL-1, 8.5 and 100 rpm, respectively. Optimization result showed that natural pH of the mature landfill leachate sample is optimum for alum coagulation process. Hence, the cost of pH adjustment could be reduced for industrial application by adopting optimized parameters. The inherent mechanism of pollutant removal was elucidated by FTIR peaks at 3853 cm-1 which indicated that hydrogen bonds play a major role in leachate removal by forming well aggregated flocs. This is concordance with SEM image that the floc was well aggregated with the porous linkages and amorphous surface structure. The optimization of leachate treatment has been achieved by minimizing the usage of alum under optimized condition.
Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Compostos de Alúmen , Bioensaio , Floculação , Ligação de Hidrogênio , Águas ResiduáriasRESUMO
Photocatalytic degradation is a promising method to remove organic pollutants from water. Photocatalysts based on two-dimensional (2D) transition metal dichalcogenides (TMDs) such as MoS2 nanomaterials have gained tremendous popularity. This is due to their narrow band gap and high visible light absorption. Herein, a MoS2 photocatalyst with highly expanded interlayer spaces of 1.51 nm was synthesized in the presence of Pluronic F-127 as a template by a facile one-pot hydrothermal method. This expanded MoS2 (MF-1) managed to photodegrade 98% (2.62 × 10-2 min-1) of methylene blue (MB) dye under irradiation of 1 W visible light-emitting diode (LED) white light. The dominant performance of MF-1 is attributed to the highly expanded interlayer spacing, which exposed more active edge sites. Moreover, the formation of surface defects such as surface cracks and sulfur vacancies (Sv) facilitates the adsorption capacity and in situ generation of reactive oxygen species (ROS). The dominant ROS responsible for the photodegradation of MB is superoxide radical (ËO2 -). The photocatalyst shows good recyclability without deterioration even after five consecutive cycles.
RESUMO
Recently, adsorption techniques have emerged as practical and effective methods for removing organic dyes, dramatically extending practical capabilities for treating deleterious pollutants in wastewater. However, an urgent issue restricting the performance of these techniques is that no available absorbents that can be used to treat both cationic and anionic organic dyes have been made with simple and reliable methods until now. Herein, we report a green synthetic strategy for the preparation of SnFe2O4/ZnO nanoparticles decorated on reduced graphene oxide (rGO), exhibiting a remarkably large surface area (120.33 m2 g-1). Substantial adsorption efficiency for removing MB dye was achieved, with 91.3% removal within 20 min at room temperature, and efficiencies of 79.6 to 92.8% are maintained as the pH conditions are varied from 3 to 11. Moreover, under mixed-dye conditions, involving MB, RhB, MO, RB5, and R6G organic materials, with dye concentrations ranging from 0.005 mM to 0.09 mM, an adsorption efficiency of above 50% can be reliably reached within 20 min. Such striking features can be interpreted as arising from a synergistic effect involving the hybrid composite based on a rGO matrix with negative charge and the dispersed SnFe2O4/ZnO nanoparticles with positive charge, additionally offering abundant adsorptive sites to allow reliable dye-adsorption kinetics.
RESUMO
Antibiotics and pharmaceuticals related products are used to enhance public health and quality of life. The wastewater that is produced from pharmaceutical industries still contains noticeable amount of antibiotics, and this has remained one of the major environmental problems facing public health. The conventional wastewater remediation approach employed by the pharmaceutical industries for the antibiotics wastewater removal is unable to remove the antibiotics completely. Besides, municipal and livestock wastewater also contain unmetabolized antibiotics released by human and animal, respectively. The antibiotic found in wastewater leads to antibiotic resistance challenges, also emergence of superbugs. Currently, numerous technological approaches have been developed to remove antibiotics from the wastewater. Therefore, it was imperative to critically review the weakness and strength of these current advanced technological approaches in use. Besides, the conventional methods for removal of antibiotics such as Klavaroti et al., Homem and Santos also discussed. Although, membrane treatment is discovered as the ultimate choice of approach, to completely remove the antibiotics, while the filtered antibiotics are still retained on the membrane. This study found, hybrid processes to be the best solution antibiotics removal from wastewater. Nevertheless, real-time monitoring system is also recommended to ascertain that, wastewater is cleared of antibiotics.
Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Antibacterianos , Humanos , Qualidade de Vida , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análiseRESUMO
Surface functionalization and shape modifications are the key strategies being utilized to overcome the limitations of semiconductors in advanced oxidation processes (AOP). Herein, the uniform α-Fe2O3 nanocrystals (α-Fe2O3-NCs) were effectively synthesized via a simple solvothermal route. Meanwhile, the sulfonic acid functionalization (SAF) and the impregnation of α-Fe2O3-NCs on g-C3N4 (α-Fe2O3-NCs@CN-SAF) were achieved through complete solvent evaporation technique. The surface functionalization of the sulfonic acid group on g-C3N4 accelerates the faster migration of electrons to the surface owing to robust electronegativity. The incorporation of α-Fe2O3-NCs with CN-SAF significantly enhances the optoelectronic properties, ultrafast spatial charge separation, and rapid charge transportation. The α-Fe2O3-HPs@CN-SAF and α-Fe2O3-NPs@CN-SAF nanocomposites attained 97.41% and 93.64% of Cr (VI) photoreduction in 10 min, respectively. The photocatalytic efficiency of α-Fe2O3-NCs@CN-SAF nanocomposite is 2.4 and 2.1 times higher than that of pure g-C3N4 and α-Fe2O3, respectively. Besides, the XPS, PEC and recycling experiments confirm the excellent photo-induced charge separation via Z-scheme heterostructure and cyclic stability of α-Fe2O3-NCs@CN-SAF nanocomposites.
Assuntos
Nanocompostos , Nanopartículas , Catálise , Luz , OxirreduçãoRESUMO
Nickel-based catalysts play an important role in the hydrogen-free deoxygenation for the production of biofuel. The yield and quality of the biofuel are critically affected by the physicochemical properties of NiO supported on nanosized zeolite Y (Y65, crystal size of 65 nm). Therefore, 10 wt% NiO supported on Y65 synthesized by using impregnation (IM) and deposition-precipitation (DP) methods were investigated. It was found that preparation methods have a significant effect on the deoxygenation of triolein. The initial rate of the DP method (14.8 goil·h-1) was 1.5 times higher than that of the IM method (9.6 goil·h-1). The DP-Y65 showed the best deoxygenation performance with a 80.0% conversion and a diesel selectivity of 93.7% at 380 °C within 1 h. The outstanding performance from the DP method was due to the smaller NiO particle size (3.57 ± 0.40 nm), high accessibility (H.F value of 0.084), and a higher Brönsted to Lewis acidity (B/L) ratio (0.29), which has improved the accessibility and deoxygenation ability of the catalyst. The NH4+ released from the decomposition of the urea during the DP process increased the B/L ratio of zeolite NaY. As a result, the pretreatment to convert Na-zeolite to H-zeolite in a conventional zeolite synthesis can be avoided. In this regard, the DP method offers a one-pot synthesis to produce smaller NiO-supported nanosized zeolite NaY with a high B/L ratio, and it managed to produce a higher yield with selectivity towards green diesel via deoxygenation under a hydrogen-free condition.
RESUMO
Sub-10 nm indium metal nanoparticles (In NPs) stabilized on conductive carbon were reacted with silver nitrate in dark conditions in water at room temperature in a galvanic replacement manner to produce an indium hydroxide/silver/carbon nanocomposite (In(OH)3/Ag/C). The chosen carbon imparted colloidal stability, high surface area, and water dispersibility suitable for photodegradation of harmful dyes in water. The size and shape of indium hydroxide and silver nanoparticles produced were found to be 6.6 ± 0.9 nm, similar to that of the In NPs that were started with. The nanocomposite was characterized by transmission electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, and thermogravimetric analysis. The galvanic reaction between In NPs and silver nitrate was tracked with UV-vis spectroscopy in a control experiment without a carbon substrate to confirm that the reaction was indeed thermodynamically spontaneous as indicated by the positive electromotive force (EMF) of +1.14 V calculated for In/Ag+ redox couple. The photocatalytic performance of the nanocomposite was evaluated to be approximately 90% under UVC radiation when 10 ppm of methylene blue and 13 wt % of indium hydroxide/silver loading on carbon were used.
RESUMO
Sustainable wastewater treatment necessitates the application of natural and green material in the approach. Thus, selecting a natural coagulant in leachate treatment is a crucial step in landfill operation to prevent secondary environmental pollution due to residual inorganic coagulant in treated effluent. Current study investigated the application of guar gum in landfill leachate treatment. Central composite design in response surface methodology was used to optimize the performance of Chemical Oxygen Demand (COD) removal. Quadratic model developed indicated the optimum COD removal 22.57% at guar gum dosage of 44.39 mg/L, pH 8.56 (natural pH of leachate) and mixing speed 79.27 rpm. Scanning electron microscopy showed that floc was compact and energy-dispersive-x-ray analysis showed that guar gum was capable to adsorb multiple ions from the leachate. Structural characterization using Fourier Transform Infrared analysis demonstrated that hydrogen bonding between guar and pollutant particles was involved in coagulation and flocculation process. Therefore, guar gum coagulant present potential to be an alternative in leachate treatment where pH requirement is not required during treatment. Simultaneously, adsorption by guar gum offers added pollutant removal advantage.
Assuntos
Poluentes Químicos da Água , Galactanos , Mananas , Gomas VegetaisRESUMO
Graphene oxide (GO) and reduced graphene oxide (rGO) can act as metal-free photocatalysts to remove aqueous dye pollutants under light illumination. However, there is some disparity in past reports on the origin of the photoactivity of GO and rGO for photodegradation of dye pollutants. In this work, the photoactivity of GO and rGO for methylene blue (MB) dye photodegradation were investigated with photoelectrochemical (PEC) measurements. The optimized rGO sample (G-2) exhibited a stable photocatalytic rate, which was 2.5 times higher than that of pure GO. PEC measurements revealed that the photocatalytic activity of G-2 was elevated due to higher photocurrent density, higher charge carrier density, and better charge separation. The changes in band gap and band positions of rGO were determined through optical characterization and Mott-Schottky (M-S) plots. Finally, the photocatalytic degradation mechanism of GO and rGO on MB dye was determined.
RESUMO
Landfill application is the most common approach for biowaste treatment via leachate treatment system. When municipal solid waste deposited in the landfills, microbial decomposition breaks down the wastes generating the end products, such as carbon dioxide, methane, volatile organic compounds, and liquid leachate. However, due to the landfill age, the fluctuation in the characteristics of landfill leachate is foreseen in the leachate treatment plant. The focuses of the researchers are keeping leachate from contaminating groundwater besides keeping potent methane emissions from reaching the atmosphere. To address the above issues, scientists are required to adopt green biological methods to keep the environment safe. This review focuses on the assorting of research papers on organic content and nitrogen removal from the leachate via recent effective biological technologies instead of conventional nitrification and denitrification process. The published researches on the characteristics of various Malaysian landfill sites were also discussed. The understanding of the mechanism behind the nitrification and denitrification process will help to select an optimized and effective biological treatment option in treating the leachate waste. Recently, widely studied technologies for the biological treatment process are aerobic methane oxidation coupled to denitrification (AME-D) and partial nitritation-anammox (PN/A) process, and both were discussed in this review article. This paper gives the idea of the modification of the conventional treatment technologies, such as combining the present processes to make the treatment process more effective. With the integration of biological process in the leachate treatment, the effluent discharge could be treated in shortcut and novel pathways, and it can lead to achieving "3Rs" of reduce, reuse, and recycle approach.
Assuntos
Monitoramento Ambiental , Instalações de Eliminação de Resíduos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Reatores Biológicos , Dióxido de Carbono , Desnitrificação , Metano , Nitrificação , Nitrogênio , Oxirredução , Resíduos SólidosRESUMO
Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.
Assuntos
Indústria de Laticínios , Hidrogênio/metabolismo , Esgotos/microbiologia , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Animais , Técnicas de Cultura Celular por Lotes/métodos , Biocatálise , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Bovinos , Entropia , Ácidos Graxos Voláteis/biossíntese , Fermentação , Concentração de Íons de Hidrogênio , Temperatura , Poluentes Químicos da Água/química , Purificação da Água/métodosRESUMO
The high oxygen content in natural biomass resources, such as vegetable oil or biomass-pyrolysed bio oil, is the main constraint in their implementation as a full-scale biofuel for the automotive industry. In the present study, renewable fuel with petrodiesel-like properties was produced via catalytic deoxygenation of oleic acid in the absence of hydrogen (H2). The deoxygenation pathway of oleic acid to bio-hydrocarbon involves decarboxylation/decarbonylation of the oxygen content from the fatty acid structure in the form of carbon dioxide (CO2)/carbon monoxide (CO), with the presence of a goat manure supported Ni-Al hydrotalcite (Gm/Ni-Al) catalyst. Goat manure is an abundant bio-waste, containing a high mineral content, urea as well as cellulosic fiber of plants, which is potentially converted into activated carbon. Synthesis of Gm/Ni-Al was carried out by incorporation of pre-activated goat manure (GmA) during co-precipitation of Ni-Al catalyst with 1 : 3, 1 : 1 and 3 : 1 ratios. The physico-chemical properties of the catalysts were characterized by X-ray diffractometry (XRD), Brunauer-Emmet-Teller (BET) surface area, field emission surface electron microscopy (FESEM) and temperature program desorption ammonia (TPD-NH3) analysers. The catalytic deoxygenation reaction was performed in a batch reactor and the product obtained was characterized by using gas chromatography-mass spectroscopy (GCMS) for compound composition identification as well as gas chromatography-flame ionisation detector (GC-FID) for yield and selectivity determination. The optimization and evaluation were executed using response surface methodology (RSM) in conjunction with central composite design (CCD) with 5-level-3-factors. From the RSM reaction model, it was found that the Gm/Ni-Al 1 : 1 catalysed deoxygenation reaction gives the optimum product yield of 97.9% of hydrocarbon in the range of C8-C20, with diesel selectivity (C17: heptadecane and heptadecene compounds) of 63.7% at the optimal reaction conditions of: (1) reaction temperature: 327.14 °C, (2) reaction time: 1 h, and (3) catalyst amount: 5 wt%.