Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Bioresour Technol ; 321: 124496, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33302013


In this review investigate the apple orchard waste (AOW) is potential organic resources to produce multi-product and there sustainable interventions with biorefineries approaches to assesses the apple farm industrial bioeconomy. The thermochemical and biological processes like anaerobic digestion, composting and , etc., that generate distinctive products like bio-chemicals, biofuels, biofertilizers, animal feed and biomaterial, etc can be employed for AOW valorization. Integrating these processes can enhanced the yield and resource recovery sustainably. Thus, employing biorefinery approaches with allied different methods can link to the progression of circular bioeconomy. This review article mainly focused on the different biological processes and thermochemical that can be occupied for the production of waste to-energy and multi-bio-product in a series of reaction based on sustainability. Therefore, the biorefinery for AOW move towards identification of the serious of the reaction with each individual thermochemical and biological processes for the conversion of one-dimensional providences to circular bioeconomy.

Bioresour Technol ; 320(Pt B): 124380, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33217695


Two-stage pretreatment conditions were optimized to convert corn fiber, separated from whole stillage in a corn dry grind ethanol plant, to fermentable sugars via hydrolysis. Liquid hot water pretreatment (25% solids) at 180 °C for 10 min, followed by three cycles of disk milling, provided maximum glucose, xylose, and arabinose yields of 88.5%, 41.0%, and 30.4% respectively after hydrolysis with Cellulase I. The glucose, xylose, and arabinose yields with Cellulase II at optimum conditions were 94.9%, 74.2%, and 66.3%, respectively. SSF of corn fiber using engineered yeast, with both Cellulase I and II, provided maximum ethanol concentrations of 2.13% and 2.73% (v/v). The protein content in the residual solid after fermentation was 47.95% and 52.05% for Cellulase I and II, respectively. This technology provides additional ethanol in a dry grind plant by converting corn fiber into ethanol and increases the protein content of DDGS, thereby improving the quality.

Bioresour Technol ; 275: 27-34, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30576911


The objective of this study was to analyze the processing and technoeconomic feasibility of coproduction of d-psicose and ethanol in a modified dry grind ethanol process. The yeast strain was constructed by expressing d-psicose 3-epimerases (DPE) in Sachharomyces cerevisiae. The strain was capable of converting d-fructose to d-psicose at 55 °C with a conversion efficiency of 26.6%. A comprehensive process model for modified dry grind ethanol plant with 396,000 MT/yr corn processing capacity was developed using SuperPro Designer. Predicted ethanol and d-psicose yields were 390.4 L and 75.3 kg per MT of corn, with total annual production of 154.6 million L and 29,835 MT respectively. The capital investment for the plant was estimated as 150.3 million USD with total operating cost of 85.2 million USD/yr. The unit production cost and minimum selling price of d-psicose with an internal rate of return of 15% were calculated as $0.43/kg and $1.29/kg respectively.

Frutose/biossíntese , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Racemases e Epimerases/metabolismo
Bioresour Technol ; 250: 556-563, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29197779


Algae production process is a key cost center in production of biofuels/bioproducts from microalgae. Decline in the growth of algae in outdoor ponds during non-optimal conditions is one of the hurdles for achieving consistently high algal production rates. An optimal controller can be used to overcome this limitation and provide reliable growth in outdoor conditions. A model predictive controller (MPC) was developed to optimize the algal growth, predicted by flux balance analysis, under natural disturbances, embedding within the cost function, the economic and environmental constraints associated with the process. The model, developed in MATLAB, was validated on a 30-L continuous algal culture under light, temperature and a combination of light and temperature disturbances. The MPC proved effective in minimization of a decrease in growth under these natural disturbances. The growth rates with MPC were observed to be 79-116% higher as compared to the non-MPC growth.

Biocombustíveis , Microalgas , Biomassa , Tanques , Temperatura
Bioresour Bioprocess ; 4(1): 38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28890864


Corn fractionation in modified dry grind processes results in low fermentation efficiency of corn grits because of nutrient deficiency. This study investigated the use of nutrient-rich water from germ soaking to improve grits fermentation in the conventional dry grind and granular starch hydrolysis (GSH) processes. Comparison of germ soak water with the use of protease and external B-vitamin addition in improving grits fermentation was conducted. Use of water from optimum soaking conditions (12 h at 30 °C) resulted in complete fermentation with 29 and 8% higher final ethanol yields compared to that of control in conventional and GSH process, respectively. Fermentation rate (4-24 h) of corn grits with germ soak water (0.492 v/v-h) was more than double than that of control (0.208 v/v-h) in case of conventional dry grind process. The soaking process also increased the oil concentration in the germ by about 36%, which would enhance its economic value.

Bioresour Technol ; 213: 103-110, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26995318


A compartmentalized genome scale metabolic network was reconstructed for Chlorella variabilis to offer insight into various metabolic potentials from this alga. The model, iAJ526, was reconstructed with 1455 reactions, 1236 metabolites and 526 genes. 21% of the reactions were transport reactions and about 81% of the total reactions were associated with enzymes. Along with gap filling reactions, 2 major sub-pathways were added to the model, chitosan synthesis and rhamnose metabolism. The reconstructed model had reaction participation of 4.3 metabolites per reaction and average lethality fraction of 0.21. The model was effective in capturing the growth of C. variabilis under three light conditions (white, red and red+blue light) with fair agreement. This reconstructed metabolic network will serve an important role in systems biology for further exploration of metabolism for specific target metabolites and enable improved characteristics in the strain through metabolic engineering.

Biocombustíveis , Chlorella/genética , Chlorella/metabolismo , Genoma , Engenharia Metabólica/métodos , Biomassa , Chlorella/citologia , Chlorella/crescimento & desenvolvimento , Análise do Fluxo Metabólico , Redes e Vias Metabólicas , Modelos Teóricos , Fenótipo