Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 597(7877): 503-510, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34552257

RESUMO

Large, distributed collections of miniaturized, wireless electronic devices1,2 may form the basis of future systems for environmental monitoring3, population surveillance4, disease management5 and other applications that demand coverage over expansive spatial scales. Aerial schemes to distribute the components for such networks are required, and-inspired by wind-dispersed seeds6-we examined passive structures designed for controlled, unpowered flight across natural environments or city settings. Techniques in mechanically guided assembly of three-dimensional (3D) mesostructures7-9 provide access to miniature, 3D fliers optimized for such purposes, in processes that align with the most sophisticated production techniques for electronic, optoelectronic, microfluidic and microelectromechanical technologies. Here we demonstrate a range of 3D macro-, meso- and microscale fliers produced in this manner, including those that incorporate active electronic and colorimetric payloads. Analytical, computational and experimental studies of the aerodynamics of high-performance structures of this type establish a set of fundamental considerations in bio-inspired design, with a focus on 3D fliers that exhibit controlled rotational kinematics and low terminal velocities. An approach that represents these complex 3D structures as discrete numbers of blades captures the essential physics in simple, analytical scaling forms, validated by computational and experimental results. Battery-free, wireless devices and colorimetric sensors for environmental measurements provide simple examples of a wide spectrum of applications of these unusual concepts.

2.
Adv Mater ; 33(25): e2100026, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33984170

RESUMO

Recently developed methods for transforming 2D patterns of thin-film materials into 3D mesostructures create many interesting opportunities in microsystems design. A growing area of interest is in multifunctional thermal, electrical, chemical, and optical interfaces to biological tissues, particularly 3D multicellular, millimeter-scale constructs, such as spheroids, assembloids, and organoids. Herein, examples of 3D mechanical interfaces are presented, in which thin ribbons of parylene-C form the basis of transparent, highly compliant frameworks that can be reversibly opened and closed to capture, envelop, and mechanically restrain fragile 3D tissues in a gentle, nondestructive manner, for precise measurements of viscoelastic properties using techniques in nanoindentation. Finite element analysis serves as a design tool to guide selection of geometries and material parameters for shape-matching 3D architectures tailored to organoids of interest. These computational approaches also quantitate all aspects of deformations during the processes of opening and closing the structures and of forces imparted by them onto the surfaces of enclosed soft tissues. Studies of cerebral organoids by nanoindentation show effective Young's moduli in the range from 1.5 to 2.5 kPa depending on the age of the organoid. This collection of results suggests broad utility of compliant 3D mesostructures in noninvasive mechanical measurements of millimeter-scale, soft biological tissues.

3.
Nat Commun ; 11(1): 3118, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561743

RESUMO

Low-cost flexible microwave circuits with compact size and light weight are highly desirable for flexible wireless communication and other miniaturized microwave systems. However, the prevalent studies on flexible microwave electronics have only focused on individual flexible microwave elements such as transistors, inductors, capacitors, and transmission lines. Thinning down supporting substrate of rigid chip-based monolithic microwave integrated circuits has been the only approach toward flexible microwave integrated circuits. Here, we report a flexible microwave integrated circuit strategy integrating membrane AlGaN/GaN high electron mobility transistor with passive impedance matching networks on cellulose nanofibril paper. The strategy enables a heterogeneously integrated and, to our knowledge, the first flexible microwave amplifier that can output 10 mW power beyond 5 GHz and can also be easily disposed of due to the use of cellulose nanofibril paper as the circuit substrate. The demonstration represents a critical step forward in realizing flexible wireless communication devices.

4.
Adv Mater ; 32(16): e1907478, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32104960

RESUMO

The rapid pace of progress in implantable electronics driven by novel technology has created devices with unconventional designs and features to reduce invasiveness and establish new sensing and stimulating techniques. Among the designs, injectable forms of biomedical electronics are explored for accurate and safe targeting of deep-seated body organs. Here, the classes of biomedical electronics and tools that have high aspect ratio structures designed to be injected or inserted into internal organs for minimally invasive monitoring and therapy are reviewed. Compared with devices in bulky or planar formats, the long shaft-like forms of implantable devices are easily placed in the organs with minimized outward protrusions via injection or insertion processes. Adding flexibility to the devices also enables effortless insertions through complex biological cavities, such as the cochlea, and enhances chronic reliability by complying with natural body movements, such as the heartbeat. Diverse types of such injectable implants developed for different organs are reviewed and the electronic, optoelectronic, piezoelectric, and microfluidic devices that enable stimulations and measurements of site-specific regions in the body are discussed. Noninvasive penetration strategies to deliver the miniscule devices are also considered. Finally, the challenges and future directions associated with deep body biomedical electronics are explained.


Assuntos
Monitorização Fisiológica/instrumentação , Animais , Humanos , Injeções
5.
J Neurosci Methods ; 336: 108602, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31981569

RESUMO

BACKGROUND: A number of peripheral nerve interfaces for nerve stimulation and recording exist for the purpose of controlling neural prostheses, each with a set of advantages and disadvantages. The ultimate goal of neural prostheses is a seamless bi-directional communication between the peripheral nervous system and the prosthesis. Here, we developed an interfacing electrode array, the "cuff and sieve electrodes" (CASE), integrating microfabricated cuff and sieve electrodes to a single unit, to decrease the weaknesses faced by these electrode designs in isolation. This paper presents the design and fabrication of CASE with ex vivo and in vivo testing towards chronic application. METHODS: Electroplating on electrode sites was performed to improve electrical properties of CASE. The surface morphology and chemical compound were characterized using scanning electron microscopy and energy-dispersive spectroscopy, respectively. Electrochemical impedance spectroscopy and cyclic voltammetry were performed to evaluate the electrical properties of CASE and determine viability for in vivo applications. Terminal CASE implantations were performed in a rat sciatic transection model to test the ease of implantation and capacity to write sensory information into the biological system. RESULTS: The modified platinum film resulted in reducing impedance magnitude (9.18 kΩ and 2.27 kΩ) and increasing phase angle (over 70°). CASE stimulation of the sciatic nerve at different amplitudes elicited significantly different cortical responses (p < 0.005) as demonstrated by somatosensory evoked potentials, recorded via micro-electrocorticography. CONCLUSIONS: The ability to elicit cortical responses from sciatic nerve stimulation demonstrates the proof of concept for both the implantation and chronic monitoring of CASE interfaces for innovative prosthetic control.


Assuntos
Membros Artificiais , Próteses Neurais , Animais , Impedância Elétrica , Estimulação Elétrica , Eletrodos , Eletrodos Implantados , Nervos Periféricos , Ratos
6.
Adv Healthc Mater ; 8(19): e1801593, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509350

RESUMO

Demands for precise health information tracking techniques are increasing, especially for daily dietry requirements to prevent obesity, diabetes, etc. Many commercially available sensors that detect dynamic motions of the body lack accuracy, while novel strain sensors at the research level mostly lack the capability to analyze measurements in real life conditions. Here, a stretchable, patch-type calorie expenditure measurement system is demonstrated that integrates an ultrasensitive crack-based strain sensor and Bluetooth-enabled wireless communication circuit to offer both accurate measurements and practical diagnosis of motion. The crack-based strain gauge transformed into a pop-up-shaped structure provides reliable measurements and broad range of strain (≈100%). Combined with the stretchable analysis circuit, the skin attachable tool translates variation of the knee flexion angle into calorie expenditure amount, using relative resistance change (R/R0 ) data from the flexible sensor. As signals from the knee joint angular movement translates velocity and walking/running behavior, the total amount of calorie expenditure is accurately analyzed. Finally, theoretical, experimental, and simulation analysis of signal stability, dynamic noises, and calorie expenditure calculation obtained from the device during exercise are demonstrated. For further applications, the devices are expected to be used in broader range of dynamic motion of the body for diagnosis of abnormalities and for rehabilitation.


Assuntos
Metabolismo Energético , Monitorização Ambulatorial/instrumentação , Dispositivos Eletrônicos Vestíveis , Acelerometria/instrumentação , Desenho de Equipamento , Humanos , Articulação do Joelho/fisiologia , Modelos Teóricos , Movimento , Nanotecnologia , Consumo de Oxigênio , Software , Estresse Mecânico , Tecnologia sem Fio
7.
Micromachines (Basel) ; 10(1)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658503

RESUMO

Since the 1940s electrocorticography (ECoG) devices and, more recently, in the last decade, micro-electrocorticography (µECoG) cortical electrode arrays were used for a wide set of experimental and clinical applications, such as epilepsy localization and brain⁻computer interface (BCI) technologies. Miniaturized implantable µECoG devices have the advantage of providing greater-density neural signal acquisition and stimulation capabilities in a minimally invasive fashion. An increased spatial resolution of the µECoG array will be useful for greater specificity diagnosis and treatment of neuronal diseases and the advancement of basic neuroscience and BCI research. In this review, recent achievements of ECoG and µECoG are discussed. The electrode configurations and varying material choices used to design µECoG arrays are discussed, including advantages and disadvantages of µECoG technology compared to electroencephalography (EEG), ECoG, and intracortical electrode arrays. Electrode materials that are the primary focus include platinum, iridium oxide, poly(3,4-ethylenedioxythiophene) (PEDOT), indium tin oxide (ITO), and graphene. We discuss the biological immune response to µECoG devices compared to other electrode array types, the role of µECoG in clinical pathology, and brain⁻computer interface technology. The information presented in this review will be helpful to understand the current status, organize available knowledge, and guide future clinical and research applications of µECoG technologies.

8.
Adv Mater ; 31(34): e1803637, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30345558

RESUMO

Humans have a myriad of sensory receptors in different sense organs that form the five traditionally recognized senses of sight, hearing, smell, taste, and touch. These receptors detect diverse stimuli originating from the world and turn them into brain-interpretable electrical impulses for sensory cognitive processing, enabling us to communicate and socialize. Developments in biologically inspired electronics have led to the demonstration of a wide range of electronic sensors in all five traditional categories, with the potential to impact a broad spectrum of applications. Here, recent advances in bioinspired electronics that can function as potential artificial sensory systems, including prosthesis and humanoid robots are reviewed. The mechanisms and demonstrations in mimicking biological sensory systems are individually discussed and the remaining future challenges that must be solved for their versatile use are analyzed. Recent progress in bioinspired electronic sensors shows that the five traditional senses are successfully mimicked using novel electronic components and the performance regarding sensitivity, selectivity, and accuracy have improved to levels that outperform human sensory organs. Finally, neural interfacing techniques for connecting artificial sensors to the brain are discussed.


Assuntos
Materiais Biomiméticos , Eletrônica/instrumentação , Equipamentos e Provisões , Sensação/fisiologia , Animais , Nariz Eletrônico , Audição , Humanos , Células Receptoras Sensoriais/fisiologia , Olfato , Paladar , Tato , Visão Ocular
9.
Sci Rep ; 8(1): 13194, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181589

RESUMO

Dielectrophoresis using multi-electrode arrays allows a non-invasive interface with biological cells for long-term monitoring of electrophysiological parameters as well as a label-free and non-destructive technique for neuronal cell manipulation. However, experiments for neuronal cell manipulation utilizing dielectrophoresis have been constrained because dielectrophoresis devices generally function outside of the controlled environment (i.e. incubator) during the cell manipulation process, which is problematic because neurons are highly susceptible to the properties of the physiochemical environment. Furthermore, the conventional multi-electrode arrays designed to generate dielectrophoretic force are often fabricated with non-transparent materials that confound live-cell imaging. Here we present an advanced single-neuronal cell culture and monitoring platform using a fully transparent microfluidic dielectrophoresis device for the unabated monitoring of neuronal cell development and function. The device is mounted inside a sealed incubation chamber to ensure improved homeostatic conditions and reduced contamination risk. Consequently, we successfully trap and culture single neurons on a desired location and monitor their growth process over a week. The proposed single-neuronal cell culture and monitoring platform not only has significant potential to realize an in vitro ordered neuronal network, but also offers a useful tool for a wide range of neurological research and electrophysiological studies of neuronal networks.


Assuntos
Técnicas de Cultura de Células/instrumentação , Dispositivos Lab-On-A-Chip , Neurônios/citologia , Análise de Célula Única/instrumentação , Animais , Células Cultivadas , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Imagem Óptica/instrumentação , Ratos Sprague-Dawley
10.
Adv Mater ; 30(39): e1803550, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30109736

RESUMO

Blinding disorders of the outer retina involve dysfunction and degeneration of photoreceptors. One potential approach to treat these forms of blindness is to repopulate the outer retina via a simple bolus injection of donor photoreceptors. However, this may not be ideal due to the highly polarized organization of photoreceptors that include apical light sensing photopigments and basal axon terminals. Furthermore, bolus injections create uncertainty with regard to the area, density, and retention of donor cells. Here, a novel and robust microfabrication process is developed to create 3D, micrometer-sized complex structures in ultrathin and biocompatible elastomer films (nonbiodegradable polydimethylsiloxane and biodegradable poly(glycerol-sebacate)) that can serve as polarizable photoreceptor delivery scaffolds, consisting of an array of cup-shaped photoreceptor capture wells that funnel into a microchannel. This "wine glass" scaffold design promotes efficient capture of human pluripotent stem-cell-derived photoreceptor cell bodies and guidance of basal axon extensions, ultimately achieving a uniform level of organization and polarization that is not possible with bolus injections or previously described scaffolds. In addition to future therapeutic applications, our scaffold design and materials provide a platform to generate reproducible and scalable in vitro models of photoreceptor-based diseases.


Assuntos
Células Fotorreceptoras , Polaridade Celular , Elastômeros , Humanos , Células-Tronco Pluripotentes , Retina , Tecidos Suporte
11.
ACS Appl Mater Interfaces ; 10(9): 8117-8123, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29345131

RESUMO

Photolithography based on optical mask is widely used in academic research laboratories due to its low cost, simple mechanism, and ability to pattern in micron-sized features on a wafer-scale area. Because the resolution is bound by diffraction limits of the light source, nanoscale patterning using photolithography requires short-wavelength light source combined with sophisticated optical elements, adding complexity and cost. In this paper, a novel method of subwavelength patterning process using conventional i-line mercury lamp is introduced, without the use of such advanced optical tools. The method utilizes the re-entrant geometry of image reversal photoresist produced from the developing process, where a secondary mask is generated by isotropically depositing a metal layer to cover the re-entrant profile of the photoresist. Removing the photoresist by applying ultrasonic vibrations in acetone bath uniformly cracks the metal layer at the sidewalls of the re-entrant profile, exposing the substrate with a reduced feature size. The width of the initial mask pattern can be reduced by 400 nm in a controlled manner, regardless of the original width choice. As a result, the method is shown to achieve sub-100 nm scale linear patterns compatible for both subsequent deposition process and dry-etching process. Our approach is applicable to various shapes of the patterns and can be used in electronic device fabrication requiring nanoscale lithography patterning, such as the gate fabrication of AlGaN/GaN high-electron-mobility transistor.

12.
Nat Commun ; 8(1): 1782, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176549

RESUMO

Digital image sensors in hemispherical geometries offer unique imaging advantages over their planar counterparts, such as wide field of view and low aberrations. Deforming miniature semiconductor-based sensors with high-spatial resolution into such format is challenging. Here we report a simple origami approach for fabricating single-crystalline silicon-based focal plane arrays and artificial compound eyes that have hemisphere-like structures. Convex isogonal polyhedral concepts allow certain combinations of polygons to fold into spherical formats. Using each polygon block as a sensor pixel, the silicon-based devices are shaped into maps of truncated icosahedron and fabricated on flexible sheets and further folded either into a concave or convex hemisphere. These two electronic eye prototypes represent simple and low-cost methods as well as flexible optimization parameters in terms of pixel density and design. Results demonstrated in this work combined with miniature size and simplicity of the design establish practical technology for integration with conventional electronic devices.


Assuntos
Eletrônica/instrumentação , Olho Artificial , Silício/química , Desenho de Equipamento , Semicondutores
13.
Nat Commun ; 6: 7170, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26006731

RESUMO

Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.


Assuntos
Arsenicais , Gálio , Nanofibras , Papel , Silício , Smartphone , Biodegradação Ambiental , Celulose , Micro-Ondas , Phanerochaete
14.
Nat Commun ; 5: 5747, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25490072

RESUMO

Sensory receptors in human skin transmit a wealth of tactile and thermal signals from external environments to the brain. Despite advances in our understanding of mechano- and thermosensation, replication of these unique sensory characteristics in artificial skin and prosthetics remains challenging. Recent efforts to develop smart prosthetics, which exploit rigid and/or semi-flexible pressure, strain and temperature sensors, provide promising routes for sensor-laden bionic systems, but with limited stretchability, detection range and spatio-temporal resolution. Here we demonstrate smart prosthetic skin instrumented with ultrathin, single crystalline silicon nanoribbon strain, pressure and temperature sensor arrays as well as associated humidity sensors, electroresistive heaters and stretchable multi-electrode arrays for nerve stimulation. This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies.


Assuntos
Nanotubos de Carbono/química , Desenho de Prótese , Silício/química , Pele Artificial , Pele/metabolismo , Eletrodos , Humanos , Inflamação , Movimento , Nanotecnologia/métodos , Pressão , Temperatura , Percepção do Tato
15.
Adv Healthc Mater ; 3(4): 515-25, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23996980

RESUMO

Recent development of flexible/stretchable integrated electronic sensors and stimulation systems has the potential to establish an important paradigm for implantable electronic devices, where shapes and mechanical properties are matched to those of biological tissues and organs. Demonstrations of tissue and immune biocompatibility are fundamental requirements for application of such kinds of electronics for long-term use in the body. Here, a comprehensive set of experiments studies biocompatibility on four representative flexible/stretchable device platforms, selected on the basis of their versatility and relevance in clinical usage. The devices include flexible silicon field effect transistors (FETs) on polyimide and stretchable silicon FETs, InGaN light-emitting diodes (LEDs), and AlInGaPAs LEDs, each on low modulus silicone substrates. Direct cytotoxicity measured by exposure of a surrogate fibroblast line and leachable toxicity by minimum essential medium extraction testing reveal that all of these devices are non-cytotoxic. In vivo immunologic and tissue biocompatibility testing in mice indicate no local inflammation or systemic immunologic responses after four weeks of subcutaneous implantation. The results show that these new classes of flexible implantable devices are suitable for introduction into clinical studies as long-term implantable electronics.


Assuntos
Materiais Biocompatíveis/química , Eletrônica Médica , Próteses e Implantes , Animais , Materiais Biocompatíveis/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Citocinas/sangue , Feminino , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Teste de Materiais , Camundongos , Maleabilidade
16.
Nat Protoc ; 8(12): 2413-2428, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24202555

RESUMO

The rise of optogenetics provides unique opportunities to advance materials and biomedical engineering, as well as fundamental understanding in neuroscience. This protocol describes the fabrication of optoelectronic devices for studying intact neural systems. Unlike optogenetic approaches that rely on rigid fiber optics tethered to external light sources, these novel devices carry wirelessly powered microscale, inorganic light-emitting diodes (µ-ILEDs) and multimodal sensors inside the brain. We describe the technical procedures for construction of these devices, their corresponding radiofrequency power scavengers and their implementation in vivo for experimental application. In total, the timeline of the procedure, including device fabrication, implantation and preparation to begin in vivo experimentation, can be completed in ~3-8 weeks. Implementation of these devices allows for chronic (tested for up to 6 months) wireless optogenetic manipulation of neural circuitry in animals navigating complex natural or home-cage environments, interacting socially, and experiencing other freely moving behaviors.


Assuntos
Optogenética/métodos , Tecnologia sem Fio , Animais , Encéfalo , Tecnologia de Fibra Óptica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa , Próteses e Implantes
17.
Science ; 340(6129): 211-6, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23580530

RESUMO

Successful integration of advanced semiconductor devices with biological systems will accelerate basic scientific discoveries and their translation into clinical technologies. In neuroscience generally, and in optogenetics in particular, the ability to insert light sources, detectors, sensors, and other components into precise locations of the deep brain yields versatile and important capabilities. Here, we introduce an injectable class of cellular-scale optoelectronics that offers such features, with examples of unmatched operational modes in optogenetics, including completely wireless and programmed complex behavioral control over freely moving animals. The ability of these ultrathin, mechanically compliant, biocompatible devices to afford minimally invasive operation in the soft tissues of the mammalian brain foreshadow applications in other organ systems, with potential for broad utility in biomedical science and engineering.


Assuntos
Comportamento Animal , Mapeamento Encefálico , Encéfalo/fisiologia , Neurônios/fisiologia , Optogenética , Semicondutores , Animais , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Camundongos , Microeletrodos , Miniaturização , Estimulação Luminosa
18.
Small ; 8(18): 2812-8, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-22744861

RESUMO

Strategies are presented to achieve bendable and stretchable systems of microscale inorganic light-emitting diodes with wireless powering schemes, suitable for use in implantable devices. The results include materials strategies, together with studies of the mechanical, electronic, thermal and radio frequency behaviors both in vitro and in in-vivo animal experiments.


Assuntos
Próteses e Implantes , Animais , Eletrônica , Resinas Epóxi , Desenho de Equipamento/instrumentação , Feminino , Luz , Camundongos , Camundongos Endogâmicos BALB C , Polimetil Metacrilato , Dióxido de Silício , Titânio
19.
Small ; 8(11): 1643-9, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22467223

RESUMO

A method for forming efficient, ultrathin GaN light-emitting diodes (LEDs) and for their assembly onto foreign substances is reported. The LEDs have lateral dimensions ranging from ~1 mm × 1 mm to ~25 µm × 25 µm. Quantitative experimental and theoretical studies show the benefits of small device geometry on thermal management, for both continuous and pulsed-mode operation, the latter of which suggests the potential use of these technologies in bio-integrated contexts.


Assuntos
Gálio/química , Iluminação/instrumentação , Nanotecnologia/instrumentação , Eletrônica/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...