Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 211: 120721, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070593

RESUMO

We have earlier demonstrated sensitive detection of low the volatile nerve agents Tabun, Cyclosarin and VX by using handheld Raman instrumentation in conjunction with surface-enhanced Raman scattering (SERS) attained with gold and silver coated Si nanopillar substrates. In the present proof-of-concept study, the gold substrates chemically are functionalized to realize selectivity towards organophosphorus compounds (OPs) with high sensitivity. A potential capturer and reporter molecule, chemical nerve agent antidote, 4-pyridine amide oxime, is evaluated due to its high Raman cross section, high chemical affinity towards gold, and binding specificity to the target substances Tabun, VX and Cyclosarin via the oxime group. Upon selective and covalent binding, the SERS probe undergoes structural changes which are reflected in the spectral SERS responses, making it suitable for indirect monitoring of nerve agents in aqueous solution. With the probe attached to the hotspots of Au-coated Si nanopillars, the SERS signals distinctly discriminate between specific and non-specific analyte binding of Tabun, Cyclosarin and VX down to sub ppm levels. SERS spectrum of 4-PAO is measured after microliter drop coating of aqueous sample solution onto the functionalized substrates and subsequent water evaporation from surfaces. This binding assay is complemented by letting functionalized substrates being immersed into sample solutions 1 h before measuring. Binding specific SERS response decreases in following order: Tabun > VX > Cyclosarin. Overall, the concept looks promising, as expected the candidate probe 4-PAO introduces selectivity to the nanopillar gold substrates without loss of sensitivity.

2.
ACS Nano ; 14(1): 28-117, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31478375

RESUMO

The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

3.
Chem Rev ; 120(1): 269-287, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31869216

RESUMO

The prospect of self-propelled artificial machines small enough to navigate within biological matter has fascinated and inspired researchers and the public alike since the dawn of nanotechnology. Despite many obstacles toward the realization of such devices, impressive progress on the development of its basic building block, the nanomotor, has been made over the past decade. Here, we review this emerging area with a focus on inorganic nanomotors driven or activated by light. We outline the distinct challenges and opportunities that differentiate nanomotors from micromotors based on a discussion of how stochastic forces influence the active motion of small particles. We introduce the relevant light-matter interactions and discuss how these can be utilized to classify nanomotors into three broad classes: nanomotors driven by optical momentum transfer, photothermal heating, and photocatalysis, respectively. On the basis of this classification, we then summarize and discuss the diverse body of nanomotor literature. We finally give a brief outlook on future challenges and possibilities in this rapidly evolving research area.

4.
Nano Lett ; 19(11): 8294-8302, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31647867

RESUMO

Thermo-optically generated bubbles in water provide a powerful means for active matter control in microfluidic environments. These bubbles are often formed via continuous-wave illumination of an absorbing medium resulting in bubble nucleation via vaporization of water and subsequent bubble growth from the inward diffusion of gas molecules. However, to date, such bubbles tend to be several microns in diameter, resulting in slow dissipation. This limits the dynamic rate, spatial precision, and throughput of operation in any application. Here we show that isolated plasmonic structures can be utilized as highly localized heating elements to generate thermoplasmonic nanobubbles that can be modulated at frequencies up to several kilohertz in water, orders of magnitude faster than previously demonstrated for microbubbles. The nanobubbles are envisioned as advantageous localized active manipulation elements for high throughput microfluidic applications.

5.
Opt Express ; 27(15): 21069-21082, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510190

RESUMO

Metasurfaces enable us to control the fundamental properties of light with unprecedented flexibility. However, most metasurfaces realized to date aim at modifying plane waves. While the manipulation of nonplanar wavefronts is encountered in a diverse number of applications, their control using metasurfaces is still in its infancy. Here we design a metareflector able to reflect a diverging Gaussian beam back onto itself with efficiency over 90% and focusing at an arbitrary distance. We outline a clear route towards the design of complex metareflectors that can find applications as diverse as optical tweezing, lasing, and quantum optics.

6.
Opt Express ; 27(16): A967-A980, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510484

RESUMO

The high-index all-dielectric nanoantenna system is a platform recently used for multiple applications, from metalenses to light management. These systems usually exhibit low absorption/scattering ratios and are not efficient photon harvesters. Nevertheless, by exploiting far-field interference, all-dielectric nanostructures can be engineered to achieve near-perfect absorption in specific wavelength ranges. Here, we propose - based on electrodynamics simulations - that a metasurface composed of an array of hydrogenated amorphous silicon nanoparticles on a mirror can achieve nearly complete light absorption close to the bandgap. We apply this concept to a realistic device, predicting a boost of optical performance of thin-film solar cells made of such nanostructures. In the proposed device, high-index dielectric nanoparticles act not only as nanoatennas able to concentrate light but also as the solar cell active medium, contacted at its top and bottom by transparent electrodes. By optimization of the exact geometrical parameters, we predict a system that could achieve initial conversion efficiency values well beyond 9% - using only the equivalent of a 75-nm thick active material. The device absorption enhancement is 50% compared to an unstructured device in the 400 nm - 550 nm range and more than 300% in the 650 nm - 700 nm spectral region. We demonstrate that such large values are related to the metasurface properties and to the perfect absorption mechanism.

7.
Nat Nanotechnol ; 14(7): 679-683, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31061517

RESUMO

Monolayer transition metal dichalcogenides (TMDCs) have recently been proposed as an excitonic platform for advanced optical and electronic functionalities1-3. However, in spite of intense research efforts, it has not been widely appreciated that TMDCs also possess a high refractive index4,5. This characteristic opens up the possibility to utilize them to construct resonant nanoantennas based on subwavelength geometrical modes6,7. Here, we show that nanodisks, fabricated from exfoliated multilayer WS2, support distinct Mie resonances and anapole states8 that can be tuned in wavelength over the visible and near-infrared range by varying the nanodisk size and aspect ratio. As a proof of concept, we demonstrate a novel regime of light-matter interaction-anapole-exciton polaritons-which we realize within a single WS2 nanodisk. We argue that the TMDC material anisotropy and the presence of excitons enrich traditional nanophotonics approaches based on conventional high-index materials and/or plasmonics.

8.
Opt Express ; 26(22): 29074-29085, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30470074

RESUMO

Nanoparticles made of high index dielectric materials have seen a surge of interest and have been proposed for various applications, such as metalenses, light harvesting and directional scattering. With the advent of fabrication techniques enabling colloidal suspensions, the prospects of optical manipulation of such nanoparticles becomes paramount. High index nanoparticles support electric and magnetic multipolar responses in the visible regime and interference between such modes can give rise to highly directional scattering, in particular a cancellation of back-scattered radiation at the first Kerker condition. Here we present a study of the optical forces on silicon nanoparticles in the visible and near infrared calculated using the transfer matrix method. The zero-backscattering Kerker condition is investigated as an avenue to reduce radiation pressure in an optical trap. We find that while asymmetric scattering does reduce the radiation pressure, the main determining factor of trap stability is the increased particle response near the geometric resonances. The trap stability for non-spherical silicon nanoparticles is also investigated and we find that ellipsoidal deformation of spheres enables trapping of slightly larger particles.

9.
ACS Nano ; 12(10): 9958-9965, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30165019

RESUMO

Antibody-antigen interactions are complex events central to immune response, in vivo and in vitro diagnostics, and development of therapeutic substances. We developed an ultrastable single-molecule localized surface plasmon resonance (LSPR) sensing platform optimized for studying antibody-antigen interaction kinetics over very long time scales. The setup allowed us to perform equilibrium fluctuations analysis of the PEG/anti-PEG interaction. By time and frequency domain analysis, we demonstrate that reversible adsorption of monovalently bound anti-PEG antibodies is the dominant factor affecting the LSPR fluctuations. The results suggest that equilibrium fluctuation analysis can be an alternative to established methods for determination of interaction rates. In particular, the methodology is suited to analyze molecular systems whose properties change during the initial interaction phases, for example, due to mass transport limitations or, as demonstrated here, because the effective association rate constant varies with surface concentration of adsorbed molecules.


Assuntos
Anticorpos/imunologia , Antígenos/imunologia , Técnicas Biossensoriais , Nanopartículas/química , Adsorção , Reações Antígeno-Anticorpo , Cinética , Ressonância de Plasmônio de Superfície
10.
J Vis Exp ; (136)2018 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-30010664

RESUMO

The possibility to generate and measure rotation and torque at the nanoscale is of fundamental interest to the study and application of biological and artificial nanomotors and may provide new routes towards single cell analysis, studies of non-equilibrium thermodynamics, and mechanical actuation of nanoscale systems. A facile way to drive rotation is to use focused circularly polarized laser light in optical tweezers. Using this approach, metallic nanoparticles can be operated as highly efficient scattering-driven rotary motors spinning at unprecedented rotation frequencies in water. In this protocol, we outline the construction and operation of circularly-polarized optical tweezers for nanoparticle rotation and describe the instrumentation needed for recording the Brownian dynamics and Rayleigh scattering of the trapped particle. The rotational motion and the scattering spectra provides independent information on the properties of the nanoparticle and its immediate environment. The experimental platform has proven useful as a nanoscopic gauge of viscosity and local temperature, for tracking morphological changes of nanorods and molecular coatings, and as a transducer and probe of photothermal and thermodynamic processes.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química
11.
Adv Mater ; 30(30): e1800931, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29862583

RESUMO

Advances in the understanding and fabrication of plasmonic nanostructures have led to a plethora of unprecedented optoelectronic and optochemical applications. Plasmon resonance has found widespread use in efficient optical transducers of refractive index changes in liquids. However, it has proven challenging to translate these achievements to the selective detection of gases, which typically adsorb non-specifically and induce refractive index changes below the detection limit. Here, it's shown that integration of tailored fractals of dielectric TiO2 nanoparticles on a plasmonic metasurface strongly enhances the interaction between the plasmonic field and volatile organic molecules and provides a means for their selective detection. Notably, this superior optical response is due to the enhancement of the interaction between the dielectric fractals and the plasmonic metasurface for thickness of up to 1.8 µm, much higher than the evanescent plasmonic near-field (≈30 nm) . Optimal dielectric-plasmonic structures allow measurements of changes in the refractive index of the gas mixture down to <8 × 10-6 at room temperature and selective identification of three exemplary volatile organic compounds. These findings provide a basis for the development of a novel family of dielectric-plasmonic materials with application extending from light harvesting and photocatalysts to contactless sensors for noninvasive medical diagnostics.

12.
ACS Nano ; 12(4): 3272-3279, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29529368

RESUMO

Fluorescence correlation spectroscopy (FCS) has provided a wealth of information on the composition, structure, and dynamics of cell membranes. However, it has proved challenging to reach the spatial resolution required to resolve biophysical interactions at the nanometer scale relevant to many crucial membrane processes. In this work, we form artificial cell membranes on dimeric, nanoplasmonic antennas, which shrink the FCS probe volume down to the ∼20 nm length scale. By analyzing the autocorrelation functions associated with the fluorescence bursts from individual fluorescently tagged lipids moving through the antenna "hotspots", we show that the confinement of the optical readout volume below the diffraction limit allows the temporal resolution of FCS to be increased by up to 3 orders of magnitude. Employing this high spatial and temporal resolution to probe diffusion dynamics of individual dye-conjugated lipids, we further show that lipid molecules diffuse either as single entities or as pairs in the presence of calcium ions. Removal of calcium ions by addition of the chelator EDTA almost completely removes the complex contribution, in agreement with previous theoretical predications on the role of calcium ions in mediating transient interactions between zwitterionic lipids. We envision that antenna-enhanced FCS with single-molecule burst analysis will enable resolving a broad range of challenging membrane biophysics questions, such as stimuli-induced lipid clustering and membrane protein dynamics.


Assuntos
Cálcio/química , Lipídeos/química , Membrana Celular/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência
13.
ACS Nano ; 11(10): 10053-10061, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28872830

RESUMO

Plasmonic gold nanorods are prime candidates for a variety of biomedical, spectroscopy, data storage, and sensing applications. It was recently shown that gold nanorods optically trapped by a focused circularly polarized laser beam can function as extremely efficient nanoscopic rotary motors. The system holds promise for applications ranging from nanofluidic flow control and nanorobotics to biomolecular actuation and analysis. However, to fully exploit this potential, one needs to be able to control and understand heating effects associated with laser trapping. We investigated photothermal heating of individual rotating gold nanorods by simultaneously probing their localized surface plasmon resonance spectrum and rotational Brownian dynamics over extended periods of time. The data reveal an extremely slow nanoparticle reshaping process, involving migration of the order of a few hundred atoms per minute, for moderate laser powers and a trapping wavelength close to plasmon resonance. The plasmon spectroscopy and Brownian analysis allows for separate temperature estimates based on the refractive index and the viscosity of the water surrounding a trapped nanorod. We show that both measurements yield similar effective temperatures, which correspond to the actual temperature at a distance of the order 10-15 nm from the particle surface. Our results shed light on photothermal processes on the nanoscale and will be useful in evaluating the applicability and performance of nanorod motors and optically heated nanoparticles for a variety of applications.

14.
Nano Lett ; 17(9): 5258-5263, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28829601

RESUMO

Electromagnetic metasurfaces with strong nonlinear responses and angular selectivity could offer many new avenues for designing ultrathin optics components. We investigated the optical second harmonic generation from plasmonic metasurfaces composed of aligned gold nanopillars with a pronounced out-of-plane tilt using a flexible nonlinear Fourier microscope. The experimental and computational results demonstrate that these samples function as wavevector-selective nonlinear metasurfaces, that is, the coherent second harmonic signal does not only depend on the polarization and wavelength of the excitation beam, but also of its direction of incidence, in spite of the subwavelength thickness of the active layer. Specifically, we observe that the nonlinear response can vary by almost two orders-of-magnitude when the incidence angle is changed from positive to negative values compared to the surface normal. Further, it is demonstrated that these metasurfaces act as a directional nonlinear mirrors, paving the way for new design of directional meta-mirrors in the nonlinear regime.

15.
Adv Mater ; 29(29)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28585264

RESUMO

High-refractive-index silicon nanoresonators are promising low-loss alternatives to plasmonic particles in CMOS-compatible nanophotonics applications. However, complex 3D particle morphologies are challenging to realize in practice, thus limiting the range of achievable optical functionalities. Using 3D film structuring and a novel gradient mask transfer technique, the first intrinsically chiral dielectric metasurface is fabricated in the form of a monolayer of twisted silicon nanocrescents that can be easily detached and dissolved into colloidal suspension. The metasurfaces exhibit selective handedness and a circular dichroism as large as 160° µm-1 due to pronounced differences in induced current loops for left-handed and right-handed polarization. The detailed morphology of the detached particles is analyzed using high-resolution transmission electron microscopy. Furthermore, it is shown that the particles can be manipulated in solution using optical tweezers. The fabrication and detachment method can be extended to different nanoparticle geometries and paves the way for a wide range of novel nanophotonic experiments and applications of high-index dielectrics.

16.
Nano Lett ; 17(5): 3054-3060, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28358487

RESUMO

Optically thin perfect light absorbers could find many uses in science and technology. However, most physical realizations of perfect absorption for the optical range rely on plasmonic excitations in nanostructured metallic metasurfaces, for which the absorbed light energy is quickly lost as heat due to rapid plasmon decay. Here we show that a silicon metasurface excited in a total internal reflection configuration can absorb at least 97% of incident near-infrared light due to interferences between coherent electric and magnetic dipole scattering from the silicon nanopillars that build up the metasurface and the reflected wave from the supporting glass substrate. This "near-perfect" absorption phenomenon loads more than 50 times more light energy into the semiconductor than what would be the case for a uniform silicon sheet of equal surface density, irrespective of incident polarization. We envisage that the concept could be used for the development of novel light harvesting and optical sensor devices.

17.
ACS Nano ; 11(4): 4265-4274, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28350962

RESUMO

Synthetic three-dimensional (3D) nanoarchitectures are providing more control over light-matter interactions and rapidly progressing photonic-based technology. These applications often utilize the strong synergy between electromagnetic fields and surface plasmons (SPs) in metallic nanostructures. However, many of the SP interactions hosted by complex 3D nanostructures are poorly understood because they involve dark hybridized states that are typically undetectable with far-field optical spectroscopy. Here, we use experimental and theoretical electron energy loss spectroscopy to elucidate dark SPs and their interactions in layered metal-insulator-metal disc nanostructures. We go beyond the established dipole SP hybridization analysis by measuring breathing and multipolar SP hybridization. In addition, we reveal multidimensional SP hybridization that simultaneously utilizes in-plane and out-of-plane SP coupling. Near-field classic electrodynamics calculations provide excellent agreement with all experiments. These results advance the fundamental understanding of SP hybridization in 3D nanostructures and provide avenues to further tune the interaction between electromagnetic fields and matter.

18.
Nat Commun ; 8: 14791, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28337980

RESUMO

Yeast lacks dedicated photoreceptors; however, blue light still causes pronounced oscillations of the transcription factor Msn2 into and out of the nucleus. Here we show that this poorly understood phenomenon is initiated by a peroxisomal oxidase, which converts light into a hydrogen peroxide (H2O2) signal that is sensed by the peroxiredoxin Tsa1 and transduced to thioredoxin, to counteract PKA-dependent Msn2 phosphorylation. Upon H2O2, the nuclear retention of PKA catalytic subunits, which contributes to delayed Msn2 nuclear concentration, is antagonized in a Tsa1-dependent manner. Conversely, peroxiredoxin hyperoxidation interrupts the H2O2 signal and drives Msn2 oscillations by superimposing on PKA feedback regulation. Our data identify a mechanism by which light could be sensed in all cells lacking dedicated photoreceptors. In particular, the use of H2O2 as a second messenger in signalling is common to Msn2 oscillations and to light-induced entrainment of circadian rhythms and suggests conserved roles for peroxiredoxins in endogenous rhythms.


Assuntos
Peróxido de Hidrogênio/metabolismo , Transdução de Sinal Luminoso , Peroxidases/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Biocatálise/efeitos da radiação , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Luz , Transdução de Sinal Luminoso/efeitos da radiação , Modelos Biológicos , Fosforilação/efeitos da radiação , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos da radiação , Saccharomyces cerevisiae/efeitos da radiação
19.
Light Sci Appl ; 6(8): e17042, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30167285

RESUMO

Localized surface plasmon resonance (LSPR) biosensing based on supported metal nanoparticles offers unparalleled possibilities for high-end miniaturization, multiplexing and high-throughput label-free molecular interaction analysis in real time when integrated within an opto-fluidic environment. However, such LSPR-sensing devices typically contain extremely large regions of dielectric materials that are open to molecular adsorption, which must be carefully blocked to avoid compromising the device readings. To address this issue, we made the support essentially invisible to the LSPR by carefully removing the dielectric material overlapping with the localized plasmonic fields through optimized wet-etching. The resulting LSPR substrate, which consists of gold nanodisks centered on narrow SiO2 pillars, exhibits markedly reduced vulnerability to nonspecific substrate adsorption, thus allowing, in an ideal case, the implementation of thicker and more efficient passivation layers. We demonstrate that this approach is effective and fully compatible with state-of-the-art multiplexed real-time biosensing technology and thus represents the ideal substrate design for high-throughput label-free biosensing systems with minimal sample consumption.

20.
Nanoscale ; 9(2): 673-683, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27942672

RESUMO

Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência , Ouro , Nanopartículas Metálicas , Corantes Fluorescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA