RESUMO
Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf)2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30â V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280â mV at pHâ 7), although with limited efficiency. On the other hand, oxygenation is maximum at pHâ 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(µ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction.
RESUMO
Two new heterobimetallic [LNiO2Cu(RPY2)]+ (RPY2 = N-substituted bis 2-pyridyl(ethylamine) ligands with R = indane, 3a or R = Me, 3b) complexes have been spectroscopically trapped at low temperatures. They were prepared by reacting the mononuclear side-on LNiII superoxo precursor bearing a ß-diketiminate ligand (L = [HC-(CMeNC6H3(iPr)2)2]) with the Cu(i) complexes. In contrast to the oxo groups in known high-valent [M2(µ-O)2]n+ (M = Fe, Co, Ni, Cu) cores that display electrophilic reactivities, 3a and 3b display rather nucleophilic oxo cores active in aldehyde deformylation reactions. However, the spectroscopic and reactivity properties of 3a/3b are found to be distinct relative to that of the previously reported [LNiO2Cu(MeAN)]+ complex containing a more basic (nucleophilic) N,N,N',N',N'-pentamethyl-dipropylenetriamine (MeAN) ligand at the copper centre. The geometry and electronic properties of the copper ligands affect the electron density of the oxygen atoms of the heterodinuclear {Ni(µ-O)2} core and 3a/3b undergo slower nucleophilic and faster electrophilic reactions than the previously reported [LNiO2Cu(MeAN)]+ intermediate. The present study therefore demonstrates the tuning of the electrophilicity/nucleophilicity of the oxygen atoms of the heterobimetallic [Ni(µ-O)2Cu]2+ cores by controlling the electron donation from the ancillary ligands, and underlines the significance of subtle electronic changes in the physical and chemical properties of the biologically relevant heterobimetallic metal-dioxygen intermediates.