Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(17): 7363-7370, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424691

RESUMO

The electronic structure and dynamics of 2D transition metal dichalcogenide (TMD) monolayers provide important underpinnings both for understanding the many-body physics of electronic quasi-particles and for applications in advanced optoelectronic devices. However, extensive experimental investigations of semiconducting monolayer TMDs have yielded inconsistent results for a key parameter, the quasi-particle band gap (QBG), even for measurements carried out on the same layer and substrate combination. Here, we employ sensitive time- and angle-resolved photoelectron spectroscopy (trARPES) for a high-quality large-area MoS2 monolayer to capture its momentum-resolved equilibrium and excited-state electronic structure in the weak-excitation limit. For monolayer MoS2 on graphite, we obtain QBG values of ≈2.10 eV at 80 K and of ≈2.03 eV at 300 K, results well-corroborated by the scanning tunneling spectroscopy (STS) measurements on the same material.

2.
Rev Sci Instrum ; 90(6): 063901, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31255018

RESUMO

We performed nonlinear optical two-dimensional Fourier transform spectroscopy measurements using an optical resistive high-field magnet on GaAs quantum wells. Magnetic fields up to 25 T can be achieved using the split helix resistive magnet. Two-dimensional spectroscopy measurements based on the coherent four-wave mixing signal require phase stability. Therefore, these measurements are difficult to perform in environments prone to mechanical vibrations. Large resistive magnets use extensive quantities of cooling water, which causes mechanical vibrations, making two-dimensional Fourier transform spectroscopy very challenging. Here, we report on the strategies we used to overcome these challenges and maintain the required phase-stability throughout the measurement. A self-contained portable platform was used to set up the experiments within the time frame provided by a user facility. Furthermore, this platform was floated above the optical table in order to isolate it from vibrations originating from the resistive magnet. Finally, we present two-dimensional Fourier transform spectra obtained from GaAs quantum wells at magnetic fields up to 25 T and demonstrate the utility of this technique in providing important details, which are obscured in one dimensional spectroscopy.

3.
Rev Sci Instrum ; 90(2): 023105, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831755

RESUMO

Time- and angle-resolved photoelectron spectroscopy (trARPES) is a powerful method to track the ultrafast dynamics of quasiparticles and electronic bands in energy and momentum space. We present a setup for trARPES with 22.3 eV extreme-ultraviolet (XUV) femtosecond pulses at 50-kHz repetition rate, which enables fast data acquisition and access to dynamics across momentum space with high sensitivity. The design and operation of the XUV beamline, pump-probe setup, and ultra-high vacuum endstation are described in detail. By characterizing the effect of space-charge broadening, we determine an ultimate source-limited energy resolution of 60 meV, with typically 80-100 meV obtained at 1-2 × 1010 photons/s probe flux on the sample. The instrument capabilities are demonstrated via both equilibrium and time-resolved ARPES studies of transition-metal dichalcogenides. The 50-kHz repetition rate enables sensitive measurements of quasiparticles at low excitation fluences in semiconducting MoSe2, with an instrumental time resolution of 65 fs. Moreover, photo-induced phase transitions can be driven with the available pump fluence, as shown by charge density wave melting in 1T-TiSe2. The high repetition-rate setup thus provides a versatile platform for sensitive XUV trARPES, from quenching of electronic phases down to the perturbative limit.

4.
Science ; 359(6375): 579-582, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29420291

RESUMO

Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

5.
Sci Adv ; 3(11): e1600735, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29202025

RESUMO

The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-terahertz response of the model stripe compound La1.75Sr0.25NiO4, yielding novel insight into its electronic and structural dynamics following an ultrafast optical quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen-as witnessed by time-delayed suppression of zone-folded Ni-O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. The hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry-breaking dynamics in solids.

6.
Nat Commun ; 6: 7459, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26067922

RESUMO

Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 10(13) s(-1) is generated at 22.3 eV, with 5 × 10(-5) conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

7.
Rev Sci Instrum ; 85(9): 093102, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25273702

RESUMO

An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with the retarding ratio can be well approximated by applying Liouville's theorem of constant emittance to the electron trajectories inside the lens system. The performance of the setup is demonstrated by characterizing the laser fluence-dependent transient surface photovoltage response of a laser-excited Si(100) sample.

8.
J Phys Chem Lett ; 5(15): 2753-9, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26277975

RESUMO

Understanding interfacial charge-transfer processes on the atomic level is crucial to support the rational design of energy-challenge relevant systems such as solar cells, batteries, and photocatalysts. A femtosecond time-resolved core-level photoelectron spectroscopy study is performed that probes the electronic structure of the interface between ruthenium-based N3 dye molecules and ZnO nanocrystals within the first picosecond after photoexcitation and from the unique perspective of the Ru reporter atom at the center of the dye. A transient chemical shift of the Ru 3d inner-shell photolines by (2.3 ± 0.2) eV to higher binding energies is observed 500 fs after photoexcitation of the dye. The experimental results are interpreted with the aid of ab initio calculations using constrained density functional theory. Strong indications for the formation of an interfacial charge-transfer state are presented, providing direct insight into a transient electronic configuration that may limit the efficiency of photoinduced free charge-carrier generation.

9.
Phys Rev Lett ; 104(17): 177401, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20482139

RESUMO

We report a femtosecond midinfrared study of the broadband low-energy response of individually separated (6,5) and (7,5) single-walled carbon nanotubes. Strong photoinduced absorption is observed around 200 meV, whose transition energy, oscillator strength, resonant chirality enhancement, and dynamics manifest the observation of quasi-one-dimensional intraexcitonic transitions. A model of the nanotube 1s-2p cross section agrees well with the signal amplitudes. Our study further reveals saturation of the photoinduced absorption with increasing phase-space filling of the correlated e-h pairs.

10.
Opt Express ; 15(9): 5775-81, 2007 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19532835

RESUMO

We report the generation of ultrabroadband pulses spanning the 50-130 THz frequency range via phase-matched difference frequency mixing within the broad spectrum of sub-10 fs pulses in LiIO(3). Model calculations reproduce the octave-spanning spectra and predict few-cycle THz pulse durations less than 20 fs. The broad applicability of this scheme is demonstrated with 9-fs pulses from a Ti:sapphire oscillator and with 7-fs amplified pulses from a hollow fiber compressor as pump sources.

11.
Phys Rev Lett ; 96(1): 017402, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16486513

RESUMO

We report the first observation of stimulated emission of terahertz radiation from internal transitions of excitons. The far-infrared electromagnetic response of Cu2O is monitored via broadband terahertz pulses after ultrafast resonant excitation of three-dimensional 3p excitons. Stimulated emission from the 3p to the energetically lower 2s bound level occurs at a photon energy of 6.6 meV, with a cross section of approximately 10(-14) cm2. Simultaneous excitation of both exciton levels, in turn, drives quantum beats, which lead to efficient terahertz emission sharply peaked at the difference frequency.

12.
Phys Rev Lett ; 88(2): 027003, 2002 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-11801029

RESUMO

We report the first study of the optical conductivity of MgB2 covering the range of its lowest-energy superconducting gap. Terahertz time-domain spectroscopy is utilized to determine the complex, frequency-dependent conductivity sigma(omega) of thin films. The imaginary part reveals an inductive response due to the emergence of the superconducting condensate. The real part exhibits a strong depletion of oscillator strength near 5 meV resulting from the opening of a superconducting energy gap. The gap ratio of 2Delta0/k(B)TC approximately 1.9 is well below the weak-coupling value, pointing to complex behavior in this novel superconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...