Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33772638

RESUMO

The dopaminergic system of zebrafish is complex and the numerous pathways and receptors in the central nervous system (CNS) are being extensively studied. A critical factor for the synthesis, activation and release of catecholamines (CAs) is the presence of tyrosine hydroxylase, an enzyme which converts L-tyrosine into levodopa. Levodopa thus is the intermediary in the synthesis of dopamine (DA) and norepinephrine (NE) and promotes its release; therefore, CAs play an important role in the CNS with hormonal functions. Here, we use levodopa/carbidopa to clarify the involvement of the dopaminergic pathway in the stress response in zebrafish submitted to an acute stress challenge. Acute stress was induced by chasing fish with a net for 2 min and assessed by measuring whole-body cortisol levels. Two experiments were carried out, the first with exposure to levodopa/carbidopa and the second with exposure to AMPT and levodopa/carbidopa. Levodopa/carbidopa balances the stress response through its action on the zebrafish hypothalamic-pituitary-adrenal (HPA) axis. Changes in cortisol levels suggest that DA was related to the balance of the stress response and that NE decreased this response. These effects were specific to stress since levodopa/carbidopa did not induce changes in cortisol in non-stressed fish.

2.
Environ Sci Pollut Res Int ; 27(31): 38559-38567, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32623676

RESUMO

Due to human activities, there is an increasing presence of agrochemicals residues in water bodies, which could be attributed to an increased use of these chemicals, incorrect disposal of packaging materials, and crop leaching. The effects of these residues on prey-predator relationship of aquatic animals are poorly known. Here, we show that fish acutely exposed to glyphosate, 2,4-D, and methylbenzoate-based agrichemicals have their anti-predatory responses impaired. We exposed zebrafish to sub-lethal concentrations of agrichemicals and evaluated their behavioral reaction against a simulated bird predatory strike. We observed that agrichemical-exposed fish spent more time in a risky area, suggesting that the pesticides interfered with their ability of risk perception. Our results highlight the impairment and environmental consequences of agrochemical residues, which can affect aquatic life and crucial elements for life (food web) such as the prey-predator relationship.


Assuntos
Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Agroquímicos , Animais , Cadeia Alimentar , Humanos , Comportamento Predatório
3.
Environ Sci Pollut Res Int ; 26(25): 26293-26303, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286368

RESUMO

Since behavior is the connection between the internal physiological processes of an animal and its interaction with the environment, a complete behavioral repertoire is crucial for fish survival and fitness, at both the individual and population levels. Thus, unintended exposure of non-target organisms to antipsychotic residues in the environment can impact their normal behavior, and some of these behavioral changes can be seen during the entire life of the animal and passed to subsequent generations. Although there are some reports related to transgenerational toxicology, little is known of the long-term consequences of exposure to pharmaceutical compounds such as risperidone. Here, we show that zebrafish exposed to risperidone (RISP) during embryonic and larval stages presented impaired anti-predatory behavior during adulthood, characterizing a persistent effect. We also show that some of these behavioral changes are present in the following generation, characterizing a transgenerational effect. This suggests that even short exposures to environmentally relevant concentrations, at essential stages of development, can persist throughout the whole life of the zebrafish, including its offspring. From an environmental perspective, our results suggested possible risks and long-term consequences associated with drug residues in water, which can affect aquatic life and endanger species that depend on appropriate behavioral responses for survival.


Assuntos
Risperidona/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Comportamento Animal/efeitos dos fármacos , Ecotoxicologia/métodos , Embrião não Mamífero/efeitos dos fármacos , Feminino , Larva/efeitos dos fármacos , Masculino , Comportamento Predatório/efeitos dos fármacos , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia
4.
Sci Rep ; 7(1): 14121, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074994

RESUMO

The ability to avoid and escape from predators are clearly relevant behaviors from the ecological perspective and directly interfere with the survival of organisms. Detected in the aquatic environment, risperidone can alter the behavior of exposed species. Considering the risk of exposure in the early stages of life, we exposed zebrafish embryos to risperidone during the first 5 days of life. Risperidone caused hyperactivity in exposed larvae, which in an environmental context, the animals may be more vulnerable to predation due to greater visibility or less perception of risk areas.


Assuntos
Comportamento Animal/efeitos dos fármacos , Resíduos de Drogas/farmacologia , Larva/efeitos dos fármacos , Psicotrópicos/farmacologia , Risperidona/farmacologia , Poluentes Químicos da Água/farmacologia , Peixe-Zebra , Animais , Relação Dose-Resposta a Droga
5.
PeerJ ; 5: e3739, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28890851

RESUMO

Chemical communication relating to predation risk is a trait common among fish species. Prey fish under threat of predation can signal risk to conspecific fish, which then exhibit defensive responses. Fish also assess predation risk by visual cues and change their behavior accordingly. Here, we explored whether these behavioral changes act as visual alarm signals to conspecific fish that are not initially under risk. We show that shoals of zebrafish (Danio rerio) visually exposed to a predator display antipredator behaviors. In addition, these defensive maneuvers trigger antipredator reactions in conspecifics and, concomitantly, stimulate the hypothalamus-pituitary-interrenal axis, leading to cortisol increase. Thus, we conclude that zebrafish defensive behaviors act as visual alarm cues that induce antipredator and stress response in conspecific fish.

6.
Gen Comp Endocrinol ; 252: 236-238, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716505

RESUMO

In this article, we show that the tyrosine hydroxylase inhibitor α-Methyl-l-tyrosine (AMPT) decreased the responsiveness of the zebrafish stress axis to an acute stressful challenge. These effects were specific for responses to stimulation, since unstimulated (basal) cortisol levels were not altered by AMPT. Moreover, AMPT decreased the stress response 15min after stimulation, but not after that time period. To our knowledge, this is the first report about the effects of AMPT on the neuroendocrine axis of adult zebrafish in acute stress responses. Overall, these results suggest a mechanism of catecholamine-glucocorticoid interplay in neuroendocrine responses of fish, pointing an interesting avenue for physiological research, as well as an important endpoint that can be disrupted by environmental contamination. Further experiments will unravel the mechanisms by which AMPT blocked the cortisol response.


Assuntos
Inibidores Enzimáticos/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Peixe-Zebra/fisiologia , alfa-Metiltirosina/farmacologia , Animais , Feminino , Hidrocortisona/sangue , Masculino , Tirosina 3-Mono-Oxigenase/metabolismo , Peixe-Zebra/sangue
7.
Environ Toxicol ; 32(7): 1964-1972, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28371364

RESUMO

The glucocorticoid cortisol, the end product of hypothalamus-pituitary-interrenal axis in zebrafish (Danio rerio), is synthesized via steroidogenesis and promotes important physiological regulations in response to a stressor. The failure of this axis leads to inability to cope with environmental challenges preventing adaptive processes in order to restore homeostasis. Pesticides and agrichemicals are widely used, and may constitute an important class of environmental pollutants when reach aquatic ecosystems and nontarget species. These chemical compounds may disrupt hypothalamus-pituitary-interrenal axis by altering synthesis, structure or function of its constituents. We present evidence that organophosphorus exposure disrupts stress response by altering the expression of key genes of the neural steroidogenesis, causing downregulation of star, hsp70, and pomc genes. This appears to be mediated via muscarinic receptors, since the muscarinic antagonist scopolamine blocked these effects.


Assuntos
Disruptores Endócrinos/toxicidade , Inseticidas/toxicidade , Metil Paration/toxicidade , Receptores Muscarínicos/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Proteínas de Choque Térmico HSP72/genética , Proteínas de Choque Térmico HSP72/metabolismo , Hidrocortisona/metabolismo , Locomoção/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Escopolamina/farmacologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Sci Rep ; 6: 37612, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874070

RESUMO

Here we provide, at least to our knowledge, the first evidence that aripiprazole (APPZ) in the water blunts the stress response of exposed fish in a concentration ten times lower than the concentration detected in the environment. Although the mechanism of APPZ in the neuroendocrine axis is not yet determined, our results highlight that the presence of APPZ residues in the environment may interfere with the stress responses in fish. Since an adequate stress response is crucial to restore fish homeostasis after stressors, fish with impaired stress response may have trouble to cope with natural and/or imposed stressors with consequences to their welfare and survival.


Assuntos
Aripiprazol/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Feminino , Hidrocortisona/metabolismo , Masculino
9.
Arch Environ Contam Toxicol ; 71(3): 415-22, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27423874

RESUMO

In agriculture intensive areas, fishponds and natural water bodies located in close proximity to these fields receive water with variable amounts of agrichemicals. Consequently, toxic compounds reach nontarget organisms. For instance, aquatic organisms can be exposed to tebuconazole-based fungicides (TBF), glyphosate-based herbicides (GBH), and atrazine-based herbicides (ABH) that are potentially dangerous, which motivates the following question: Are these agrichemicals attractant or aversive to fish? To answer this question, adult zebrafish were tested in a chamber that allows fish to escape from or seek a lane of contaminated water. This attraction and aversion paradigm was evaluated with zebrafish in the presence of an acute contamination with these compounds. We showed that only GBH was aversive to fish, whereas ABH and TBF caused neither attraction nor aversion for zebrafish. Thus, these chemicals do not impose an extra toxic risk by being an attractant for fish, although TBF and ABH can be more deleterious, because they induce no aversive response. Because the uptake and bioaccumulation of chemicals in fish seems to be time- and dose-dependent, a fish that remains longer in the presence of these substances tends to absorb higher concentrations than one that escapes from contaminated sites.


Assuntos
Agroquímicos/toxicidade , Peixes/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Aprendizagem da Esquiva , Comportamento Animal , Testes de Toxicidade , Peixe-Zebra
10.
Environ Toxicol Pharmacol ; 41: 89-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26667671

RESUMO

The contamination of rivers and other natural water bodies, including underground waters, is a current reality. Human occupation and some economic activities generate a wide range of contaminated effluents that reach these water resources, including psychotropic drug residues. Here we show that fluoxetine, diazepam and risperidone affected the initial development of zebrafish. All drugs increased mortality rate and heart frequency and decreased larvae length. In addition, risperidone and fluoxetine decreased egg hatching. The overall results points to a strong potential of these drugs to cause a negative impact on zebrafish initial development and, since the larvae viability was reduced, promote adverse effects at the population level. We hypothesized that eggs and larvae absorbed the drugs that exert its effects in the central nervous system. These effects on early development may have significant environmental implications.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Psicotrópicos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Diazepam/toxicidade , Feminino , Fluoxetina/toxicidade , Larva/efeitos dos fármacos , Masculino , Mortalidade , Risperidona/toxicidade , Peixe-Zebra/embriologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-26325205

RESUMO

Psychotropic medications are widely used, and their prescription has increased worldwide, consequently increasing their presence in aquatic environments. Therefore, aquatic organisms can be exposed to psychotropic drugs that may be potentially dangerous, raising the question of whether these drugs are attractive or aversive to fish. To answer this question, adult zebrafish were tested in a chamber that allows the fish to escape or seek a lane of contaminated water. These attraction and aversion paradigms were evaluated by exposing the zebrafish to the presence of acute contamination with these compounds. The zebrafish were attracted by certain concentrations of diazepam, fluoxetine, risperidone and buspirone, which were most likely detected by olfaction, because this behavior was absent in anosmic fish. These findings suggest that despite their deleterious effects, certain psychoactive drugs attract fish.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Psicotrópicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Aprendizagem da Esquiva/fisiologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Peixe-Zebra
12.
PLoS One ; 10(10): e0140800, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26473477

RESUMO

The presence of drugs and their metabolites in surface waters and municipal effluents has been reported in several studies, but its impacts on aquatic organisms are not yet well understood. This study investigated the effects of acute exposure to the antipsychotic risperidone on the stress and behavioral responses in zebrafish. It became clear that intermediate concentration of risperidone inhibited the hypothalamic-pituitary-interrenal axis and displayed anxiolytic-like effects in zebrafish. The data presented here suggest that the presence of this antipsychotic in aquatic environments can alter neuroendocrine and behavior profiles in zebrafish.


Assuntos
Ansiolíticos/efeitos adversos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Risperidona/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Peixe-Zebra/metabolismo , Animais , Ansiolíticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/patologia , Risperidona/farmacologia , Poluentes Químicos da Água/farmacologia
13.
Physiol Behav ; 139: 182-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25449397

RESUMO

Here, we show that individually housed zebrafish presented a reduced cortisol response to an acute stressor (persecution with a pen net for 120 s) compared to zebrafish housed in groups of 10. We hypothesized that the cortisol response to stress was reduced in individually housed zebrafish because they depend solely on their own perceptions of the stressor, whereas among grouped zebrafish, the stress response might be augmented by chemical and/or behavioral cues from the other members of the shoal. This hypothesis was based on previous described chemical communication of stress in fish as well on individual variation in stressor perception and potential individual differences in fish personality.


Assuntos
Hidrocortisona/metabolismo , Comportamento Social , Isolamento Social , Estresse Psicológico/fisiopatologia , Peixe-Zebra/fisiologia , Animais , Feminino , Abrigo para Animais , Masculino , Percepção , Isolamento Social/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...