Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488895

RESUMO

Variants in the KIF1A gene can cause autosomal recessive spastic paraplegia 30, autosomal recessive hereditary sensory neuropathy, or autosomal (de novo) dominant mental retardation type 9. More recently, variants in KIF1A have also been described in a few cases with autosomal dominant spastic paraplegia. Here, we describe 20 KIF1A variants in 24 patients from a clinical exome sequencing cohort of 347 individuals with a mostly 'pure' spastic paraplegia. In these patients, spastic paraplegia was slowly progressive and mostly pure, but with a highly variable disease onset (0-57 years). Segregation analyses showed a de novo occurrence in seven cases, and a dominant inheritance pattern in 11 families. The motor domain of KIF1A is a hotspot for disease causing variants in autosomal dominant spastic paraplegia, similar to mental retardation type 9 and recessive spastic paraplegia type 30. However, unlike these allelic disorders, dominant spastic paraplegia was also caused by loss-of-function variants outside this domain in six families. Finally, three missense variants were outside the motor domain and need further characterization. In conclusion, KIF1A variants are a frequent cause of autosomal dominant spastic paraplegia in our cohort (6-7%). The identification of KIF1A loss-of-function variants suggests haploinsufficiency as a possible mechanism in autosomal dominant spastic paraplegia.

2.
Clin Chem ; 65(10): 1295-1306, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31375477

RESUMO

BACKGROUND: Many muscular dystrophies currently remain untreatable. Recently, dietary ribitol has been suggested as a treatment for cytidine diphosphate (CDP)-l-ribitol pyrophosphorylase A (CRPPA, ISPD), fukutin (FKTN), and fukutin-related protein (FKRP) myopathy, by raising CDP-ribitol concentrations. Thus, to facilitate fast diagnosis, treatment development, and treatment monitoring, sensitive detection of CDP-ribitol is required. METHODS: An LC-MS method was optimized for CDP-ribitol in human and mice cells and tissues. RESULTS: CDP-ribitol, the product of CRPPA, was detected in all major human and mouse tissues. Moreover, CDP-ribitol concentrations were reduced in fibroblasts and skeletal muscle biopsies from patients with CRPPA myopathy, showing that CDP-ribitol could serve as a diagnostic marker to identify patients with CRPPA with severe Walker-Warburg syndrome and mild limb-girdle muscular dystrophy (LGMD) phenotypes. A screen for potentially therapeutic monosaccharides revealed that ribose, in addition to ribitol, restored CDP-ribitol concentrations and the associated O-glycosylation defect of α-dystroglycan. As the effect occurred in a mutation-dependent manner, we established a CDP-ribitol blood test to facilitate diagnosis and predict individualized treatment response. Ex vivo incubation of blood cells with ribose or ribitol restored CDP-ribitol concentrations in a patient with CRPPA LGMD. CONCLUSIONS: Sensitive detection of CDP-ribitol with LC-MS allows fast diagnosis of patients with severe and mild CRPPA myopathy. Ribose offers a readily testable dietary therapy for CRPPA myopathy, with possible applicability for patients with FKRP and FKTN myopathy. Evaluation of CDP-ribitol in blood is a promising tool for the evaluation and monitoring of dietary therapies for CRPPA myopathy in a patient-specific manner.

4.
Sci Rep ; 9(1): 8280, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164682

RESUMO

Myotonic dystrophy type 1 is a multisystem disorder caused by the expansion of a trinucleotide repeat in the DMPK gene. In this study we evaluated the performance of the FastDM1TM DMPK sizing kit in myotonic dystrophy type 1 testing. This commercially available triplet repeat-primed PCR based kit was validated using reference and clinical samples. Based on testing with 19 reference samples, the assay yielded repeat sizes within three repeats from the consensus reference length, demonstrating an accuracy of 100%. Additionally, the assay generated consistent repeat size information with a concentration range of template-DNA, and upon repetition and reproduction (CV 0.36% to 0.41%). Clinical performance was established with 235 archived prenatal and postnatal clinical samples, yielding results of 100% sensitivity (95% CI, 97.29% to 100%) and 100% specificity (95% CI, 96.19% to 100%) in classifying the samples into the respective genotype groups of 5-35 (normal), 36-50 (non-pathogenic pre-expansion), 51-150 (unstable intermediate-sized pathogenic) or >150 (unstable pathogenic) CTG repeats, respectively. Furthermore, the assay identified interrupted repeat expansions in all samples known to have interruptions, and also identified interruptions in a subset of the clinical samples.

5.
J Neuromuscul Dis ; 6(2): 241-258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127727

RESUMO

BACKGROUND: Neuromuscular disorders (NMDs) are clinically and genetically heterogeneous. Accurate molecular genetic diagnosis can improve clinical management, provides appropriate genetic counseling and testing of relatives, and allows potential therapeutic trials. OBJECTIVE: To establish the clinical utility of panel-based whole exome sequencing (WES) in NMDs in a population with children and adults with various neuromuscular symptoms. METHODS: Clinical exome sequencing, followed by diagnostic interpretation of variants in genes associated with NMDs, was performed in a cohort of 396 patients suspected of having a genetic cause with a variable age of onset, neuromuscular phenotype, and inheritance pattern. Many had previously undergone targeted gene testing without results. RESULTS: Disease-causing variants were identified in 75/396 patients (19%), with variants in the three COL6-genes (COL6A1, COL6A2 and COL6A3) as the most common cause of the identified muscle disorder, followed by variants in the RYR1 gene. Together, these four genes account for almost 25% of cases in whom a definite genetic cause was identified. Furthermore, likely pathogenic variants and/or variants of uncertain significance were identified in 95 of the patients (24%), in whom functional and/or segregation analysis should be used to confirm or reject the pathogenicity. In 18% of the cases with a disease-causing variant of which we received additional clinical information, we identified a genetic cause in genes of which the associated phenotypes did not match that of the patients. Hence, the advantage of panel-based WES is its unbiased approach. CONCLUSION: Whole exome sequencing, followed by filtering for NMD genes, offers an unbiased approach for the genetic diagnostics of NMD patients. This approach could be used as a first-tier test in neuromuscular disorders with a high suspicion of a genetic cause. With uncertain results, functional testing and segregation analysis are needed to complete the evidence.

6.
Eur J Paediatr Neurol ; 23(3): 404-409, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30885501

RESUMO

PURPOSE: Epilepsy in GLUT1 deficiency syndrome is generally drug-resistant; ketogenic diet (KD) therapy is the mainstay of therapy, as production of ketones provides the brain with an alternative energy source, bypassing the defect in GLUT1. Failure of KD therapy and risk factors for failure have been sparsely published. METHODS: We performed a retrospective study of GLUT1DS patients with refractory epilepsy failing on KD therapy, to identify their clinical characteristics. RESULTS: Failure of the ketogenic diet was due to KD inefficacy (poor effect despite adequate ketosis), as well as intolerance and an inability to attain ketosis. Our cohort of seven patients in whom KD therapy failed stood out for their advanced age at seizure onset, i.e. almost 4 years vs 8 months in large series, female sex, as well as their advanced age at diagnosis and initiation of KD therapy. EEG recordings during KD therapy can aid in the assessment of effectiveness of the KD therapy. CONCLUSIONS: GLUT1DS is generally described as a treatable disorder and existing case series do not provide details of treatment failure. In select patients with GLUT1DS, KD therapy fails, rendering GLUT1DS an essentially untreatable disorder. Failure of the ketogenic diet was due to KD inefficacy (poor effect despite adequate ketosis), as well as intolerance and an inability to attain ketosis. Failure to reduce seizure frequency with deterioration of the EEG findings should lead to consideration of cessation of KD therapy.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/dietoterapia , Dieta Cetogênica , Proteínas de Transporte de Monossacarídeos/deficiência , Adolescente , Erros Inatos do Metabolismo dos Carboidratos/complicações , Criança , Epilepsia Resistente a Medicamentos/dietoterapia , Epilepsia Resistente a Medicamentos/etiologia , Feminino , Humanos , Masculino , Estudos Retrospectivos
8.
Brain ; 142(3): 542-559, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668673

RESUMO

Biallelic pathogenic variants in PLPBP (formerly called PROSC) have recently been shown to cause a novel form of vitamin B6-dependent epilepsy, the pathophysiological basis of which is poorly understood. When left untreated, the disease can progress to status epilepticus and death in infancy. Here we present 12 previously undescribed patients and six novel pathogenic variants in PLPBP. Suspected clinical diagnoses prior to identification of PLPBP variants included mitochondrial encephalopathy (two patients), folinic acid-responsive epilepsy (one patient) and a movement disorder compatible with AADC deficiency (one patient). The encoded protein, PLPHP is believed to be crucial for B6 homeostasis. We modelled the pathogenicity of the variants and developed a clinical severity scoring system. The most severe phenotypes were associated with variants leading to loss of function of PLPBP or significantly affecting protein stability/PLP-binding. To explore the pathophysiology of this disease further, we developed the first zebrafish model of PLPHP deficiency using CRISPR/Cas9. Our model recapitulates the disease, with plpbp-/- larvae showing behavioural, biochemical, and electrophysiological signs of seizure activity by 10 days post-fertilization and early death by 16 days post-fertilization. Treatment with pyridoxine significantly improved the epileptic phenotype and extended lifespan in plpbp-/- animals. Larvae had disruptions in amino acid metabolism as well as GABA and catecholamine biosynthesis, indicating impairment of PLP-dependent enzymatic activities. Using mass spectrometry, we observed significant B6 vitamer level changes in plpbp-/- zebrafish, patient fibroblasts and PLPHP-deficient HEK293 cells. Additional studies in human cells and yeast provide the first empirical evidence that PLPHP is localized in mitochondria and may play a role in mitochondrial metabolism. These models provide new insights into disease mechanisms and can serve as a platform for drug discovery.

9.
Epilepsia ; 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30525188

RESUMO

OBJECTIVE: Epilepsy is highly prevalent among patients with intellectual disability (ID), and seizure control is often difficult. Identification of the underlying etiology in this patient group is important for daily clinical care. We assessed the diagnostic yield of whole exome sequencing (WES). In addition, we evaluated which clinical characteristics influence the likelihood of identifying a genetic cause and we assessed the potential impact of the genetic diagnosis on (antiepileptic) treatment strategy. METHODS: One hundred patients with both unexplained epilepsy and (borderline) ID (intelligence quotient ≤ 85) were included. All patients were evaluated by a clinical geneticist, a (pediatric) neurologist, and/or a specialist ID physician. WES analysis was performed in two steps. In step 1, analysis was restricted to the latest versions of ID and/or epilepsy gene panels. In step 2, exome analysis was extended to all genes (so-called full exome analysis). The results were classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS: In 58 patients, the diagnostic WES analysis reported one or more variant(s). In 25 of the 100 patients, these were classified as (likely) pathogenic, in 24 patients as variants of uncertain significance, and in the remaining patients the variant was most likely not related to the phenotype. In 10 of 25 patients (40%) with a (likely) pathogenic variant, the genetic diagnosis might have an impact on the treatment strategy in the future. SIGNIFICANCE: This study illustrates the clinical diagnostic relevance of WES for patients with both epilepsy and ID. It also demonstrates that implementing WES diagnostics might have impact on the (antiepileptic) treatment strategy in this population. Confirmation of variants of uncertain significance in (candidate) genes may further increase the yield.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30522958

RESUMO

Spinocerebellar ataxia type 21 (SCA21/ATX-TMEM240) was recently found to be caused by mutations in TMEM240, with still limited knowledge on the phenotypic spectrum and disease course. Here we present five subjects from three novel SCA21 families from different parts of the world (including a novel c.196G > A, p.G66R TMEM240 variant from Colombia), demonstrating that, in addition to cerebellar ataxia, not only hypokinetic features (hypomimia, bradykinesia), but also hyperkinetic movement disorders (poly-mini-myoclonus, proximal myoclonus) are a recurrent part of the phenotypic spectrum of SCA21. Presenting first prospective longitudinal data, our results provide examples of two different disease trajectories: while it was inherently progressive in adult-onset cases, a dramatically improving trajectory was observed in an infantile-onset case. A systematic review of all previously reported SCA21 patients (n = 42) demonstrates that SCA21 is a relatively early-onset SCA (median onset age 18 years; range 1-61 years) with frequent non-cerebellar involvement, including hyporeflexia (69%), bradykinesia (65%), slow saccades (38%) and pyramidal signs (17%). Our results characterize SCA21 as a multisystem disorder with substantial extra-cerebellar involvement, including a wide spectrum of hypo- as well as hyperkinetic movement disorders as well as damage to the midbrain, corticospinal tract and peripheral nerves. However, in contrast to the current perspective on SCA21 disease, cognitive impairment is not an obligatory feature of the disease. The disease course is inherently progressive in adult-onset subjects, but might also be characterized by improvement in infantile-onset cases. These findings have important consequences of the work-up and counseling of SCA21/ATX-TMEM240 patients.

11.
Eur J Med Genet ; 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30572172

RESUMO

AIMS AND OBJECTIVE: To characterize the phenotype of CAPN1 (SPG76) mutations in patients diagnosed with hereditary spastic paraplegia (HSP). BACKGROUND: The CAPN1 gene, located on chromosome 11q13.1, is a protein-coding gene involved in neuronal plasticity, migration, microtubular regulation and cerebellar development. Several families with CAPN1 mutations have recently been reported to present with autosomal recessive (AR) HSP and/or ataxia. METHOD: Patients with HSP were identified through neurological and genetic clinics with detailed phenotyping. Whole exome sequencing revealed novel pathogenic CAPN1 mutations in four patients from 3 families. RESULTS: Affected families were of Turkish, Japanese, and Punjabi descent and all were consanguineous. Onset of spastic paraplegia in the four patients was between 20 and 37 years. Two also had mild ataxia. Three different novel, homozygous mutations in CAPN1 were found: c.2118+1G > T, c.397C > T, c.843+1G > C. The patient with the earliest onset also manifested profound muscle weakness, likely related to a second homozygous mutation in DYSF (dysferlinopathy). CONCLUSIONS: The phenotype of AR CAPN1 mutations appears to be spastic paraplegia with or without ataxia; onset is most commonly in adulthood. Eye movement abnormalities, skeletal defects, peripheral neuropathy and amyotrophy can sometimes be seen. Occasionally, patients can present with ataxia, illustrating the genotypic and phenotypic overlap between HSP and spastic ataxia. With the advent of exome sequencing, mutations in more than one gene can be identified, which may contribute to the phenotypic variation, even within a family.

12.
Am J Hum Genet ; 103(5): 666-678, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343943

RESUMO

Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.

14.
Artigo em Inglês | MEDLINE | ID: mdl-30194039

RESUMO

OBJECTIVE: To describe the clinical spectrum of benign nocturnal alternating hemiplegia of childhood (BNAHC) including long-term follow-up data of previously published cases and to propose an underlying genetic cause of this disorder. METHODS: We studied the medical data of two novel patients, reviewed the literature on BNAHC, and gathered information of the most recent follow-up of published cases regarding the course of episodes, further development, attempted drugs, ancillary investigations, and sequelae. RESULTS: All patients, i.e. two novel cases and twelve patients identified in the literature (13 boys, 1 girl, age at onset four months to three years), experienced episodes of hemiplegia during nocturnal or daytime sleep heralded by inconsolable crying. Possible triggers included stress and sleep deprivation. Eleven of fourteen patients had a family history of migraine or 'intermittent headache' and two sets of siblings are reported. In one case, exome sequencing revealed a heterozygous 16p11.2 deletion involving 33 genes, including the PRRT2 gene. EEG showed ictal and/or interictal contralateral slowing in four patients. Treatment efficacy was generally disappointing. A complete disappearance of attacks appeared in nearly all cases at most recent follow-up. In a remarkably high number of cases (10/14, 71%), hyperactive behaviour was reported during follow-up. CONCLUSION: We underscore the phenotypic homogeneity including the self-limiting course of BNAHC episodes and suggest the condition be renamed 'benign childhood hemiplegia during sleep' (BCHS). We propose a role for the PRRT2 gene and the resulting neuronal hyperexcitability as one of its possible underpinning mechanisms and discuss the clinical similarities of BCHS with the recognized PRRT2-related disorders.

16.
Brain ; 141(9): 2592-2604, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084953

RESUMO

Autosomal recessive cerebellar ataxias are a group of rare disorders that share progressive degeneration of the cerebellum and associated tracts as the main hallmark. Here, we report two unrelated patients with a new subtype of autosomal recessive cerebellar ataxia caused by biallelic, gene-disruptive mutations in GDAP2, a gene previously not implicated in disease. Both patients had onset of ataxia in the fourth decade. Other features included progressive spasticity and dementia. Neuropathological examination showed degenerative changes in the cerebellum, olive inferior, thalamus, substantia nigra, and pyramidal tracts, as well as tau pathology in the hippocampus and amygdala. To provide further evidence for a causative role of GDAP2 mutations in autosomal recessive cerebellar ataxia pathophysiology, its orthologous gene was investigated in the fruit fly Drosophila melanogaster. Ubiquitous knockdown of Drosophila Gdap2 resulted in shortened lifespan and motor behaviour anomalies such as righting defects, reduced and uncoordinated walking behaviour, and compromised flight. Gdap2 expression levels responded to stress treatments in control flies, and Gdap2 knockdown flies showed increased sensitivity to deleterious effects of stressors such as reactive oxygen species and nutrient deprivation. Thus, Gdap2 knockdown in Drosophila and GDAP2 loss-of-function mutations in humans lead to locomotor phenotypes, which may be mediated by altered responses to cellular stress.

17.
Neuromuscul Disord ; 28(9): 750-756, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30122514

RESUMO

We describe four unrelated patients with the same de novo heterozygous missense mutation c.751C>T in the DYNC1H1 gene. We found a high phenotype-genotype correlation with all four patients having early childhood-onset predominant lower limb muscle weakness and wasting which was slowly progressing and later-onset mild upper extremities proximal weakness. All four patients presented minor cognitive dysfunction with learning difficulty and developmental behavioural comorbidities with mild abnormalities in the brain MRI. The leg muscle MRI findings are highly consistent in DYN1CH1-related spinal muscular atrophy with lower limb predominance (SMALED) with relative sparing of biceps femoris and semitendinosus, and hypertrophy of adductor longus in the thighs; and sparing the anterior and medial muscles in the calves. This report provides important clinical evidence indicating the de novo heterozygous missense mutation c.751C>T in the DYNC1H1 gene is pathogenic causing SMALED. Muscle MRI is more specific than muscle biopsy in the diagnosis of SMALED.

18.
Eur J Paediatr Neurol ; 22(5): 866-869, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29970281

RESUMO

Leukoencephalopathy with brain calcifications and cysts (LCC) is a genetic white matter disorder, which involves the brain small blood vessels. In the absence of extra-neurological symptoms, LCC has a pathognomonic radiological phenotype. Recently, biallelic mutations in the SNORD118 gene, which is a non-protein coding gene, were discovered to cause LCC. We present here two siblings with developmental delay and a typical MRI pattern, who were diagnosed with LCC. The mutations in the SNORD118 gene were initially missed with whole exome sequencing (WES), but recognition of the MRI patterns of both children raised the suspicion of LCC and led to a genetically proven diagnosis after re-evaluation of the WES data.

19.
Am J Med Genet A ; 176(7): 1602-1609, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29736960

RESUMO

Intellectual disability (ID) and global developmental delay are closely related; the latter is reserved for children under the age of 5 years as it is challenging to reliably assess clinical severity in this population. ID is a common condition, with up to 1%-3% of the population being affected and leading to a huge social and economic impact. ID is attributed to genetic abnormalities most of the time; however, the exact role of genetic involvement in ID is yet to be determined. Whole exome sequencing (WES) has gained popularity in the workup for ID, and multiple studies have been published examining the diagnostic yield in identification of the disease-causing variant (16%-55%), with the genetic involvement increasing as intelligence quotient decreases. WES has also accelerated novel disease gene discovery in this field. We identified a novel biallelic variant in the KIF16B gene (NM_024704.4:c.3611T > G) in two brothers that may be the cause of their phenotype.

20.
Ann Neurol ; 83(5): 926-934, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29630738

RESUMO

OBJECTIVE: Cut homeodomain transcription factor CUX2 plays an important role in dendrite branching, spine development, and synapse formation in layer II to III neurons of the cerebral cortex. We identify a recurrent de novo CUX2 p.Glu590Lys as a novel genetic cause for developmental and epileptic encephalopathy (DEE). METHODS: The de novo p.Glu590Lys variant was identified by whole-exome sequencing (n = 5) or targeted gene panel (n = 4). We performed electroclinical and imaging phenotyping on all patients. RESULTS: The cohort comprised 7 males and 2 females. Mean age at study was 13 years (0.5-21.0). Median age at seizure onset was 6 months (2 months to 9 years). Seizure types at onset were myoclonic, atypical absence with myoclonic components, and focal seizures. Epileptiform activity on electroencephalogram was seen in 8 cases: generalized polyspike-wave (6) or multifocal discharges (2). Seizures were drug resistant in 7 or controlled with valproate (2). Six patients had a DEE: myoclonic DEE (3), Lennox-Gastaut syndrome (2), and West syndrome (1). Two had a static encephalopathy and genetic generalized epilepsy, including absence epilepsy in 1. One infant had multifocal epilepsy. Eight had severe cognitive impairment, with autistic features in 6. The p.Glu590Lys variant affects a highly conserved glutamine residue in the CUT domain predicted to interfere with CUX2 binding to DNA targets during neuronal development. INTERPRETATION: Patients with CUX2 p.Glu590Lys display a distinctive phenotypic spectrum, which is predominantly generalized epilepsy, with infantile-onset myoclonic DEE at the severe end and generalized epilepsy with severe static developmental encephalopathy at the milder end of the spectrum. Ann Neurol 2018;83:926-934.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA