Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32519537

RESUMO

In organic photovoltaics (OPVs), the mechanical contact between charge transport layers and photoactive layer can influence the electrical contact that facilitates carrier collection. Unfortunately, the mechanical contact at the interface is rarely discussed in the OPV context. Herein, we report a distinct molecular locking effect that occurs between the donor molecules in the photoactive layer and the hole transport layer (HTL). This is achieved by doping chloroplatinic acid into poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate). The "molecular lock" at the interface leads to denser distribution and more ordered assembling of PM6 donor molecules close to the HTL. Consequently, the trap-assisted recombination in the cell is greatly suppressed, and the carrier lifetime is prolonged by more than 2 times. Together with the elevated charge carrier collection probability, a high fill factor of 77% and a power conversion efficiency of 16.5% are achieved in the PM6:Y6-based OPVs. This study provides a feasible way to boost the device performance by reinforcing the interfacial interaction between the HTL and photoactive layer.

2.
Chem Commun (Camb) ; 56(48): 6531-6534, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32395735

RESUMO

Two different terminal groups, rhodanine-flanked benzo[c][1,2,5]thiadiazole (BR) and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IM2F), were connected to an indaceno[1,2-b:5,6-b']dithiophene (IDT) core to construct a new non-fullerene acceptor (IDTBF). Solar cells based on this acceptor exhibited promising photovoltaic performances with a power conversion efficiency (PCE) of up to 10.43%.

4.
iScience ; 23(3): 100965, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32199291

RESUMO

Here we introduce a σ-hole-containing volatile solid additive, 1, 4-diiodotetrafluorobenzene (A3), in PM6:Y6-based OSCs. Aside from the appropriate volatility of A3 additive, the synergetic halogen interactions between A3 and photoactive matrix contribute to more condensed and ordered molecular arrangement in the favorable interpenetrating donor/acceptor domains. As a result, greatly accelerated charge transport process with suppressed charge recombination possibility is observed and ultimately a champion PCE value of 16.5% is achieved. Notably, the A3 treated OSCs can maintain a high efficiency of over 16.0% in a wide concentration range of A3 additive between 10 and 35 mg/mL. The A3-treated device shows excellent stability with an efficiency of 15.9% after 360-h storage. This work demonstrates that the σ-hole interaction can be applied to enhance the OSC performance and highlights the importance of non-covalent interactions in the optoelectronic materials.

5.
J Phys Chem Lett ; : 2838-2845, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32202789

RESUMO

Triplet generation in organic solar cells has been considered a major loss channel. Determining the density of the triplet-state population in an operating device is challenging. Here, we employ transient absorption (TA) spectroscopy on the quinoxaline-thiophene copolymer TQ1 blended with PC71BM, quantify the transient charge and triplet-state densities, and parametrize their generation and recombination dynamics. The charge recombination parameters reproduce the experimentally measured current-voltage characteristics in charge carrier drift-diffusion simulations, and they yield the steady-state charge densities. We demonstrate that triplets are formed by both geminate and nongeminate recombination of charge carriers and decay primarily by triplet-triplet annihilation. Using the charge densities in the rate equations describing triplet-state dynamics, we find that triplet-state densities in devices are in the range of charge carrier densities. Despite this substantial triplet-state buildup, TQ1:PC71BM devices exhibit only moderate geminate recombination and significantly reduced nongeminate charge recombination, with reduction factors between 10-4 and 10-3 compared to Langevin recombination.

6.
Nanoscale ; 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32016197

RESUMO

Poly[3-(4-carboxybutyl)thiophene-2,5-diyl] (P3CT) has been noticed as a promising hole transport layer (HTL) for high-performance inverted planar perovskite solar cells (PSCs) due to its excellent stability and relatively high hole mobility. As we all know, the morphology of perovskite films is largely influenced by the substrate materials. Considering the affinity of alkali metal ions Rb+ and Cs+ with perovskite materials, inverted perovskite solar cells using alkali metal ion (Rb+, Cs+) doped P3CT (denoted as P3CT-Rb and P3CT-Cs) as the HTLs were investigated in this work. It turned out that the work function (WF) of P3CT-Rb matches well with the valence band of perovskites. The perovskite (MAPbI3-xClx) film deposited on top of the P3CT-Rb film exhibited a dense and uniform morphology with superior crystallinity and few pinholes. Consequently, a high efficiency of 20.52% was achieved for P3CT-Rb HTL-based devices, with an impressive open-circuit voltage (Voc) of 1.144 V and a high fill factor (FF) of 82.78%.

7.
ACS Appl Mater Interfaces ; 12(2): 2695-2707, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31854965

RESUMO

Disentangling temporally overlapping charge carrier recombination events in organic bulk heterojunctions by optical spectroscopy is challenging. Here, a new methodology for employing delayed luminescence spectroscopy is presented. The proposed method is capable of distinguishing between recombination of spatially separated charge carriers and trap-assisted charge recombination simply by monitoring the delayed luminescence (afterglow) of bulk heterojunctions with a quasi time-integrated detection scheme. Applied on the model composite of the donor poly(6,12-dihydro-6,6,12,12-tetraoctyl-indeno[1,2-b]fluorene-alt-benzothiadiazole) (PIF8BT) polymer and the acceptor ethyl-propyl perylene diimide (PDI) derivative, that is, PIF8BT:PDI, the luminescence of charge-transfer (CT) states created by nongeminate charge recombination on the ns to µs timescale is observed. Fluence-dependent, quasi time-integrated detection of the CT luminescence monitors exclusively emissive charge recombination events, while rejecting the contribution of other early-time emissive processes. Trap-assisted and bimolecular charge recombination channels are identified based on their distinct dependence on fluence. The importance of the two recombination channels is correlated with the layer's order and electrical properties of the corresponding devices. Four different microstructures of the PIF8BT:PDI composite obtained by thermal annealing are investigated. Thermal annealing of PIF8BT:PDI shrinks the PDI domains in parallel with the growth of the PIF8BT domains in the blend. Common to all states studied, the delayed CT luminescence signal is dominated by trap-assisted recombination. Yet, the minor fraction of fully separated charge recombination in the overall CT emission increases as the difference in the size of the donor and acceptor domains in the PIF8BT:PDI blend becomes larger. Electric field-induced quenching measurements on complete PIF8BT:PDI devices confirm quantitatively the dominance of emissive trap-limited charge recombination and demonstrates that only 40% of the PIF8BT/PDI CT luminescence comes from the recombination of fully-separated charges, taking place within 200 ns after photoexcitation. The method is applicable to other nonfullerene acceptor blends beyond the system discussed here, if their CT state luminescence can be monitored.

8.
Food Res Int ; 127: 108628, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882076

RESUMO

Perfluorodecanoic acid (PFDA) is a highly toxic food contaminant that is extensively used in food applications as surface antifouling agent. In this present study, we aimed to assess whether green tea polyphenols (GTPs) and epigallocatechin-3-gallate (EGCG) exert protective effects against PFDA-induced liver damage and inflammation in mice. A mouse model to evaluate liver toxicity was established by giving mice drinking water containing different concentrations of PFDA. GTPs or EGCG (0.32%, w/v) were co-administered to mice exposed to PFDA in drinking water. Overall, GTPs and EGCG extended the survival time and inhibited weight loss among mice who received a lower dose of PFDA. Moreover, GTPs and EGCG ameliorated hepatic oxidative stress, cell apoptosis, necrosis, steatosis, edema, and degeneration, reduced hepatic inflammation and NLRP3 inflammasome activation caused by a moderate dose of PFDA. Taken together, these results show that GTPs or EGCG (or green tea intake) supplements can be beneficial for people exposed to PFDA.

9.
Adv Sci (Weinh) ; 6(21): 1901613, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31728292

RESUMO

Thick-film all-small-molecule (ASM) organic solar cells (OSCs) are preferred for large-scale fabrication with printing techniques due to the distinct advantages of monodispersion, easy purification, and negligible batch-to-batch variation. However, ASM OSCs are typically constrained by the morphology aspect to achieve high efficiency and maintain thick film simultaneously. Specifically, synchronously manipulating crystallinity, domain size, and phase segregation to a suitable level are extremely challenging. Herein, a derivative of benzodithiophene terthiophene rhodanine (BTR) (a successful small molecule donor for thick-film OSCs), namely, BTR-OH, is synthesized with similar chemical structure and absorption but less crystallinity relative to BTR, and is employed as a third component to construct BTR:BTR-OH:PC71BM ternary devices. The power conversion efficiency (PCE) of 10.14% and fill factor (FF) of 74.2% are successfully obtained in ≈300 nm OSC, which outperforms BTR:PC71BM (9.05% and 69.6%) and BTR-OH:PC71BM (8.00% and 65.3%) counterparts, and stands among the top values for thick-film ASM OSCs. The performance enhancement results from the enhanced absorption, suppressed bimolecular/trap-assisted recombination, improved charge extraction, optimized domain size, and suitable crystallinity. These findings demonstrate that the donor derivative featuring similar chemical structure but different crystallinity provides a promising third component guideline for high-performance ternary ASM OSCs.

10.
Food Chem ; 297: 124950, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253304

RESUMO

Leaves of plants from the genus Camellia (CAM) are used to make tea; however, there are limited data that compares chemical composition and biological activity of CAM cultivars used to make six tea types. Fourteen CAM cultivars were analyzed by HPLC and UPLC-Q-TOF-MS/MS and biological activity was assessed in a cell growth assay. Tea bioactives and cell growth inhibition varied 2-4 fold. EGCG was the dominant catechin that predicted the magnitude of growth inhibition. However, pure EGCG did not fully account for inhibitory activity suggesting that it may serve as a chemical marker for bioefficacy. As an unbiased characterization of differences in chemical composition among CAM, individual metabolomes were determined and used to generate principle components (PC). PC's from the metabolome were complementary to those from targeted analyses of tea bioactives and were predictive of growth inhibition. This study provides a frame work for identifying CAM cultivars with beneficial traits.


Assuntos
Camellia sinensis/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Camellia/química , Catequina/análogos & derivados , Catequina/análise , Catequina/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Análise de Alimentos/métodos , Análise de Alimentos/estatística & dados numéricos , Humanos , Metaboloma , Extratos Vegetais/química , Análise de Componente Principal , Espectrometria de Massas em Tandem , Chá/química
11.
Adv Sci (Weinh) ; 6(9): 1802028, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31065524

RESUMO

The reported power conversion efficiencies (PCEs) of nonfullerene acceptor (NFA) based organic photovoltaics (OPVs) now exceed 14% and 17% for single-junction and two-terminal tandem cells, respectively. However, increasing the PCE further requires an improved understanding of the factors limiting the device efficiency. Here, the efficiency limits of single-junction and two-terminal tandem NFA-based OPV cells are examined with the aid of a numerical device simulator that takes into account the optical properties of the active material(s), charge recombination effects, and the hole and electron mobilities in the active layer of the device. The simulations reveal that single-junction NFA OPVs can potentially reach PCE values in excess of 18% with mobility values readily achievable in existing material systems. Furthermore, it is found that balanced electron and hole mobilities of >10-3 cm2 V-1 s-1 in combination with low nongeminate recombination rate constants of 10-12 cm3 s-1 could lead to PCE values in excess of 20% and 25% for single-junction and two-terminal tandem OPV cells, respectively. This analysis provides the first tangible description of the practical performance targets and useful design rules for single-junction and tandem OPVs based on NFA materials, emphasizing the need for developing new material systems that combine these desired characteristics.

12.
ACS Appl Mater Interfaces ; 11(7): 6717-6723, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30633491

RESUMO

Nonfullerene acceptors (NFAs) based on calamitic-shaped small molecules are being developed rapidly to improve the photoelectron conversion efficiencies (PCEs) of organic solar cells. NFAs with light absorption extended to the near-infrared (NIR) region are of interest because they play a pivotal role in both organic tandem cells and semitransparent devices. In this work, two simple acceptor-donor-acceptor-structured NFAs (CPDT-4Cl and CPDT-4F) have been designed and synthesized. Featured with dimerized 4H-cyclopenta[1,2-b:5,4-b']dithiophene (CPDT) as the electron-donating core and Cl- or F-substituted 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile as the electron-accepting unit, the absorption spectra of two NFAs are extended to the NIR region with an absorption edge at approximately 910 nm. In conjunction with the polymer donor material PBDB-T, a PCE of 9.47% was achieved by using a CPDT-4F-based device with a short-circuit current density of up to 20.1 mA/cm2, which slightly outperforms its counterpart CPDT-4Cl (PCE = 9.28%) under the same condition. This work broadens the scope of developing new NIR NFAs with both high efficiency and easy accessibility.


Assuntos
Fontes de Energia Elétrica , Fulerenos , Energia Solar
13.
J Agric Food Chem ; 67(19): 5423-5436, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30403138

RESUMO

While the Camellia sinensis cultivar and processing method are key factors that affect tea flavor and aroma, the chemical changes in nonvolatile components associated with the tea processing method using a single cultivar of C. sinensis have not been reported. Fresh leaves from C. sinensis Longjing 43 were subjected to six tea processing methods and evaluated by targeted and untargeted chromatographic procedures. On the basis of targeted assessment of the total catechin content, three clusters were identified: yellow-green, oolong-white-dark, and black. However, principal component analysis of the total tea metabolome identified four chemical phenotypes: green-yellow, oolong, black-white, and dark. Differences in the non-catechin components included amino acids and γ-aminobutyric acid, which increased in white tea, and dihydroxyphenylalanine, valine, betaine, and theophylline, which increased in dark tea. Overall, this study identified a wide range of chemicals that are affected by commonly used tea processing methods and potentially affect the bioactivity of various tea types.


Assuntos
Camellia sinensis/química , Manipulação de Alimentos/métodos , Aminoácidos/química , Cor , Fermentação , Humanos , Folhas de Planta/química , Paladar , Chá/química
14.
J Agric Food Chem ; 67(19): 5457-5464, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30577696

RESUMO

Leaves from plants of the genus Camellia are used to make beverages and food products; however, there is limited data that compares the chemical composition of the unprocessed leaves of cultivars traditionally used to make these products. Plucked, fresh leaves from 14 commercially important cultivars were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. On the basis of assessment of 61 compounds that are known to be affected by postharvest tea processing methods, significant variation among unprocessed cultivar leaves was observed for compounds in five chemical classes: amino acids, catechins, flavonoids and flavone glycosides, phenolic acids, and alkaloids. These chemical differences were of sufficient magnitude to render two distinct chemically defined clusters of Camellia cultivars that did not reflect the traditional grouping of these cultivars based by species variant, tea type, or production region. Advanced statistical techniques identified candidate biomarkers for each chemical class to guide the development of comprehensive targeted analyses for constituents of biosynthetic pathways in which marked expression plasticity was observed. Targeted analyses of this type have the potential to identify Camellia species/cultivars that will facilitate the formulation of new beverages and designer foods with improved organoleptic characteristic and enhanced prebiotic or nutraceutical activity.


Assuntos
Camellia sinensis/química , Camellia sinensis/classificação , Camellia sinensis/metabolismo , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Metabolômica , Folhas de Planta/química , Folhas de Planta/classificação , Folhas de Planta/metabolismo , Chá/química , Chá/classificação , Chá/economia
15.
J Agric Food Chem ; 67(19): 5405-5412, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30485095

RESUMO

Large-leaf yellow tea (LYT) is made from mature tea leaves with stems and has unique sensory characteristics different from other teas. To study the chemical changes of LYT during processing, samples were collected from each step for quantitative and qualitative analyses by high-performance liquid chromatography and liquid chromatography-mass spectrometry (LC-MS). LC-MS-based nontargeted and targeted metabolomics analyses revealed that the tea sample after roasting was markedly different from samples before roasting, with the levels of epicatechins and free amino acids significantly decreased, but the epimerized catechins increased dramatically. After accounting for common compounds in tea, N-ethyl-2-pyrrolidinone-substituted flavan-3-ols were found to be the marker compounds responsible for the classification of all samples, as they rapidly rose with increasing processing temperature. These findings suggested that the predominant changes in the tea constituents during large-leaf yellow tea roasting were the thermally induced degradation and epimerization of catechins and the formation of N-ethyl-2-pyrrolidinone-substituted flavan-3-ols from l-theanine.


Assuntos
Camellia sinensis/química , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Polifenóis/química , Espectrometria de Massas em Tandem/métodos , Biomarcadores/química , Cor , Culinária , Temperatura Alta , Folhas de Planta/química , Chá/química
16.
J Agric Food Chem ; 66(29): 7674-7683, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29969892

RESUMO

Theanine, a unique bioactive constituent from tea ( Camellia sinensis) leaves, is widely used as a functional ingredient and dietary supplement. To evaluate the anti-inflammatory and hepatoprotective effects of theanine and its molecular mechanism, the lipopolysaccharide (LPS)-induced inflammation mouse model was employed in this study. The survival rate of mice in the theanine-treated group increased significantly compared with that of LPS-only group mice. Furthermore, ICR male mice were randomly divided into three or four groups: control, LPS (LPS treatment only), LPS + theanine (20 mg/kg/day), and theanine (theanine treatment only). The results showed that compared with the LPS group, the liver damage and oxidative stress of the theanine-treated group decreased significantly, based on plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations, hepatic total superoxide dismutase (T-SOD), and malondialdehyde (MDA) levels, and histological scores and apoptosis [terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) staining and caspase-3 activity] in the liver tissues. Furthermore, compared with no treatment, pretreatment with theanine significantly decreased the release of interleukin (IL)-1ß and tumor necrosis factor (TNF)-α, inhibited the expression of several inflammatory factors (including IL-1ß, TNF-α, and IL-6), and increased the IL-10/interferon (IFN)-γ ratio in the hepatic tissues. In the LPS-induced inflammation model, theanine inhibited the expression of proinflammatory mediators involved in the nuclear factor-kappa B (NF-κB) pathway, such as inducible nitric oxide synthase (iNOS) and matrix metalloproteinase-3 (MMP-3), and attenuated the phosphorylation of NF-κB in the hepatic tissues. Moreover, theanine suppressed the acute-phase response (elevated nitric oxide and C-reactive protein levels). Furthermore, theanine suppressed the LPS-induced inflammatory state by normalizing hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Taken together, the results suggest that theanine potentially ameliorates LPS-induced inflammation and acute liver injury; molecular mechanism of action may involve normalization of HPA axis hyperactivity and inactivation of the NF-κB signaling pathway.


Assuntos
Glutamatos/administração & dosagem , Lipopolissacarídeos/efeitos adversos , Hepatopatias/imunologia , Hepatopatias/prevenção & controle , Doença Aguda/terapia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Fígado/efeitos dos fármacos , Fígado/imunologia , Hepatopatias/sangue , Hepatopatias/etiologia , Masculino , Malondialdeído/imunologia , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/genética , NF-kappa B/imunologia
17.
Front Chem ; 6: 613, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619822

RESUMO

Perylene diimide (PDI) derivatives as a kind of promising non-fullerene-based acceptor (NFA) have got rapid development. However, most of the relevant developmental work has focused on synthesizing novel PDI-based structures, and few paid attentions to the selection of the polymer donor in PDI-based solar cells. Wide bandgap polymer (PBDB-T) and narrow bandgap polymer (PBDTTT-EFT) are known as the most efficient polymer donors in polymer solar cells (PSCs). While PBDB-T is in favor with non-fullerene acceptors achieving power conversion efficiency (PCE) more than 12%, PBDTTT-EFT is one of the best electron donors with fullerene acceptors with PCE up to 10%. Despite the different absorption profiles, the working principle of these benchmark polymer donors with a same electron acceptor, specially PDI-based acceptors, was rarely compared. To this end, we used PBDB-T and PBDTTT-EFT as the electron donors, and 1,1'-bis(2-methoxyethoxyl)-7,7'-(2,5-thienyl) bis-PDI (Bis-PDI-T-EG) as the electron acceptor to fabricate PSCs, and systematically compared their differences in device performance, carrier mobility, recombination mechanism, and film morphology.

18.
Angew Chem Int Ed Engl ; 57(2): 531-535, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29154413

RESUMO

Poly(isoindigo-alt-3,4-difluorothiophene) (PIID[2F]T) analogues used as "polymer acceptors" in bulk-heterojunction (BHJ) solar cells achieve >7 % efficiency when used in conjunction with the polymer donor PBFTAZ (model system; copolymer of benzo[1,2-b:4,5-b']dithiophene and 5,6-difluorobenzotriazole). Considering that most efficient polymer-acceptor alternatives to fullerenes (e.g. PC61 BM or its C71 derivative) are based on perylenediimide or naphthalenediimide motifs thus far, branched alkyl-substituted PIID[2F]T polymers are particularly promising non-fullerene candidates for "all-polymer" BHJ solar cells.

19.
Adv Sci (Weinh) ; 3(2): 1500245, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-27981016

RESUMO

Three kinds of charged star-shaped conjugated macroelectrolytes, named as PhNBr, TPANBr, and TrNBr, are synthesized as electron-collecting interlayers for inverted polymer solar cells (i-PSCs). Based on these well-defined structured interlayer materials, the light soaking (LS) effect observed in i-PSCs was studied systematically and accurately. The general character of the LS effect is further verified by studying additional i-PSC devices functionalized with other common interlayers. The key-role of UV photons was confirmed by electrochemical impedance spectroscopy and electron-only devices. In addition, the ultraviolet photoelectron spectroscopy measurements indicate that the work function of the indium tin oxide (ITO)/interlayer cathode is significantly reduced after UV treatment. In these i-PSC devices the LS effect originates from the adsorbed oxygen on the ITO substrates when oxygen plasma is used; however, even a small amount of oxygen from the ambient is also enough for triggering the LS effect, albeit with a weaker intensity. Our results suggest that the effect of adsorbed oxygen on ITO needs to be considered with attention while preparing i-PSCs. This is an important finding that can aid the large-scale manufacturing of organic solar cells via printing technologies, which do not always ensure the full protection of the device electrode substrates from oxygen.

20.
Angew Chem Int Ed Engl ; 55(42): 12996-13000, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27633799

RESUMO

Branched-alkyl-substituted poly(thieno[3,4-c]pyrrole-4,6-dione-alt-3,4-difluorothiophene) (PTPD[2F]T) can be used as a polymer acceptor in bulk heterojunction (BHJ) solar cells with a low-band-gap polymer donor (PCE10) commonly used with fullerenes. The "all-polymer" BHJ devices made with PTPD[2F]T achieve efficiencies of up to 4.4 %. While, to date, most efficient polymer acceptors are based on perylenediimide or naphthalenediimide motifs, our study of PTPD[2F]T polymers shows that linear, all-thiophene systems with adequately substituted main chains can also be conducive to efficient BHJ solar cells with polymer donors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA