Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 11(6): 5293-5308, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28613076

RESUMO

Transition metal oxides (TMOs) have attracted significant attention for energy storage applications such as supercapacitors due to their good electrical conductivity, high electrochemical response (by providing Faradaic reactions), low manufacturing costs, and easy processability. Despite exhibiting these attractive characteristics, the practical applications of TMOs for supercapacitors are still relatively limited. This is largely due to their continuous Faradaic reactions, which can lead to major changes or destruction of their structure as well phase changes (in some cases) during cycling, leading to the degradation in their capacitive performance over time. Hence, there is an immediate need to develop new synthesis methods, which will readily provide stable porous architectures, controlled phase, as well as useful control over dimensions (1-D, 2-D, and 3-D) of the metal oxides for improving their performance in supercapacitor applications. Since its discovery in late 1990s, metal-organic frameworks (MOFs) have influenced many fields of material science. In recent years, they have gained significant attention as precursors or templates for the derivation of porous metal oxide nanostructures and nanocomposites for next-generation supercapacitor applications. Even though these materials have widespread applications and have been widely studied in terms of their structural features and synthesis, it is still not clear how these materials will play an important role in the development of the supercapacitor field. In this review, we will summarize the recent developments in the field of MOF-derived porous metal oxide nanostructures and nanocomposites for supercapacitor applications. Furthermore, the current challenges along with the future trends and prospects in the application of these materials for supercapacitors will also be discussed.

2.
ACS Nano ; 11(1): 407-415, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28009507

RESUMO

Dual-phase transformation has been developed as a template-free surface patterning technique in this study. Ordered VO2 honeycomb structures with a complex hierarchy have been fabricated via this method, and the microstructures of the obtained VO2(M) coatings are tunable by tailoring the pertinent variables. The VO2(M) honeycomb-structured coatings have excellent visible light transmittance at 700 nm (Tvis) up to 95.4% with decent solar modulating ability (ΔTsol) of 5.5%, creating the potential as ultratransparent smart solar modulating coatings. Its excellent performance has been confirmed by a proof-of-principle demonstration. The dual-phase transformation technique has dramatically simplified the conventional colloidal lithography technique as a scalable surface patterning technique for achieving high-performance metal oxide coatings with diverse applications, such as catalysis, sensing, optics, electronics, and superwettable materials.

3.
Phys Chem Chem Phys ; 16(23): 11471-80, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24801357

RESUMO

The sensitivity of a metal oxide gas sensor is strongly dependent on the nature of the crystal surface exposed to the gas species. In this study, two types of zinc oxide (ZnO) nanostructures: nanoplates and nanorods with exposed (0001) and (10̄10) crystal surfaces, respectively, were synthesized through facile solvothermal methods. The gas-sensing results show that sensitivity of the ZnO nanoplates toward ethanol is two times higher than that of the ZnO nanorods, at an optimum operating temperature of 300 °C. This could be attributed to the higher surface area and the exposed (0001) crystal surfaces. DFT (Density Functional Theory) simulations were carried out to study the adsorption of ethanol on the ZnO crystal planes such as (0001), (10̄10), and (11̄20) with adsorbed O(-) ions. The results reveal that the exposed (0001) planes of the ZnO nanoplates promote better ethanol adsorption by interacting with the surface oxygen p (O2p) orbitals and stretching the O-H bond to lower the adsorption energy, leading to the sensitivity enhancement of the nanoplates. These findings will be useful for the fabrication of metal oxide nanostructures with specifically exposed crystal surfaces for improved gas-sensing and/or catalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA