Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 19(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34822485

RESUMO

Models created by the intraperitoneal injection of lipopolysaccharide (LPS) and D-galactosamine (D-GalN) have been widely used to study the pathogenesis of human acute liver failure (ALF) and drug development. Our previous study reported that oyster (Crassostrea gigas) hydrolysate (OH) had a hepatoprotective effect in LPS/D-GalN-injected mice. This study was performed to identify the hepatoprotective effect of the tyrosine-alanine (YA) peptide, the main component of OH, in a LPS/D-GalN-injected ALF mice model. We analyzed the effect of YA on previously known mechanisms of hepatocellular injury in the model. LPS/D-GalN-injected mice showed inflammatory, apoptotic, ferroptotic, and pyroptotic liver injury. The pre-administration of YA (10 mg/kg or 50 mg/kg) significantly reduced the liver damage factors. The hepatoprotective effect of YA was higher in the 50 mg/kg YA pre-administered group than in the 10 mg/kg YA pre-administered group. These results showed that YA had a hepatoprotective effect by reducing inflammation, apoptosis, ferroptosis, and pyroptosis in the LPS/D-GalN-injected ALF mouse model. We suggest that YA can be used as a functional peptide for the prevention of acute liver injury.

2.
Molecules ; 26(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34771010

RESUMO

The aim of this study is to explore anti-inflammatory phytochemicals from B. chinensis based on the inhibition of pro-inflammatory enzyme, human neutrophil elastase (HNE) and anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage. Three stereoisomers of iridal-type triterpenoids (1-3) were isolated from the roots of B. chinensis and their stereochemistries were completely identified by NOESY spectra. These compounds were confirmed as reversible noncompetitive inhibitors against HNE with IC50 values of 6.8-27.0 µM. The binding affinity experiment proved that iridal-type triterpenoids had only a single binding site to the HNE enzyme. Among them, isoiridogermanal (1) and iridobelamal A (2) displayed significant anti-inflammatory effects by suppressing the expressions of pro-inflammatory cytokines, such as iNOS, IL-1ß, and TNF-α through the NF-κB pathway in LPS-stimulated RAW264.7 cells. This is the first report that iridal-type triterpenoids are considered responsible phytochemicals for anti-inflammatory effects of B. chinensis.

3.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502229

RESUMO

The two-pore domain K+ (K2P) channel, which is involved in setting the resting membrane potential in neurons, is an essential target for receptor agonists. Activation of the γ-aminobutyric acid (GABA) receptors (GABAAR and GABABR) reduces cellular excitability through Cl- influx and K+ efflux in neurons. Relatively little is known about the link between GABAAR and the K+ channel. The present study was performed to identify the effect of GABAR agonists on K2P channel expression and activity in the neuroblastic B35 cells that maintain glutamic acid decarboxylase (GAD) activity and express GABA. TASK and TREK/TRAAK mRNA were expressed in B35 cells with a high level of TREK-2 and TRAAK. In addition, TREK/TRAAK proteins were detected in the GABAergic neurons obtained from GABA transgenic mice. Furthermore, TREK-2 mRNA and protein expression levels were markedly upregulated in B35 cells by GABAAR and GABABR agonists. In particular, muscimol, a GABAAR agonist, significantly increased TREK-2 expression and activity, but the effect was reduced in the presence of the GABAAR antagonist bicuculine or TREK-2 inhibitor norfluoxetine. In the whole-cell and single-channel patch configurations, muscimol increased TREK-2 activity, but the muscimol effect disappeared in the N-terminal deletion mutant. These results indicate that muscimol directly induces TREK-2 activation through the N-terminus and suggest that muscimol can reduce cellular excitability by activating the TREK-2 channel and by inducing Cl- influx in GABAergic neurons.


Assuntos
Agonistas de Receptores de GABA-A/farmacologia , Neurônios GABAérgicos/metabolismo , Potenciais da Membrana , Muscimol/farmacologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Receptores de GABA/química , Animais , Células Cultivadas , Neurônios GABAérgicos/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Canais de Potássio de Domínios Poros em Tandem/genética , Ratos
4.
Gen Physiol Biophys ; 40(3): 197-206, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34100376

RESUMO

We examined the effect of endothelium and lipid emulsion on vasodilation induced by minoxidil at a toxic dose and determined the underlying mechanism. The effects of endothelial denudation, NW-nitro-L-arginine methyl ester (L-NAME), methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (ODQ), and glibenclamide, alone or in combination, on minoxidil-induced vasodilation in endothelium-intact rat aorta were examined. Additionally, the effects of lipid emulsion on minoxidil-induced membrane hyperpolarization and minoxidil concentration were examined. The vasodilatory effects of minoxidil at the toxic dose were higher in endothelium-intact aorta than in endothelium-denuded aorta. L-NAME, methylene blue, ODQ, and glibenclamide attenuated minoxidil-induced vasodilation of endothelium-intact rat aorta. Combined treatment with L-NAME and glibenclamide almost eliminated minoxidil-induced vasodilation. However, lipid emulsion pretreatment did not significantly alter minoxidil-induced vasodilation. Lipid emulsion did not significantly alter minoxidil-induced membrane hyperpolarization and minoxidil concentration. Overall, minoxidil-induced vasodilation is mediated by ATP-sensitive potassium channels and pathways involving nitric oxide and guanylate cyclase.


Assuntos
Óxido Nítrico , Vasodilatação , Animais , Aorta , Endotélio Vascular , Minoxidil , NG-Nitroarginina Metil Éster , Óxido Nítrico Sintase Tipo III , Ratos
6.
Cell Death Dis ; 12(5): 445, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953167

RESUMO

Dynamin-related protein 1 (Drp1)-mediated mitochondrial dysfunction is associated with synaptic injury in the diabetic brain. However, the dysfunctional mitochondria by Drp1 deletion in the diabetic brain are poorly understood. Here, we investigated the effects of neuron-specific Drp1 deletion on synaptic damage and mitophagy in the hippocampus of a high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice. HFD/STZ-induced diabetic mice exhibited metabolic disturbances and synaptic damages. Floxed Drp1 mice were crossed with Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα)-Cre mice, to generate neuron-specific Drp1 knockout (Drp1cKO) mice, which showed marked mitochondrial swelling and dendritic spine loss in hippocampal neurons. In particular, diabetic Drp1cKO mice exhibited an increase in dendritic spine loss and higher levels of oxidative stress and neuroinflammation compared with diabetic wild-type (WT) mice. Diabetic WT mice generally displayed increased Drp1-induced small mitochondrial morphology in hippocampal neurons, but large mitochondria were prominently observed in diabetic Drp1cKO mice. The levels of microtubule-associated protein 1 light-chain 3 and lysosomal-associated membrane protein 1 proteins were significantly increased in the hippocampus of diabetic Drp1cKO mice compared with diabetic WT mice. The inhibition of Drp1 adversely promotes synaptic injury and neurodegeneration in the diabetic brain. The findings suggest that the exploratory mechanisms behind Drp1-mediated mitochondrial dysfunction could provide a possible therapeutic target for diabetic brain complications.


Assuntos
Dinaminas/metabolismo , Hipocampo/metabolismo , Dinâmica Mitocondrial/imunologia , Animais , Camundongos
7.
Plants (Basel) ; 10(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919440

RESUMO

BACKGROUND: Obesity due to an excessive intake of nutrient disturbs the hypothalamus-mediated energy metabolism subsequently develops metabolic disorders. In this study, we investigated the effect of pine needle extract (PNE) on the hypothalamic proopiomelanocortin (POMC) neurons involved in the regulation of energy balance via melanocortin system and fat tissue metabolism. METHODS: We performed electrophysiological and immunohistochemical analyses to determine the effect of PNE on POMC neurons. Mice were fed a normal or high-fat diet for 12 weeks, then received PNE for the last 2 weeks to measure the following physiological indices: Body weight, food intake, fat/lean mass, glucose metabolism, and plasma leptin levels. In addition, changes of thermogenic, lipolytic, and lipogenetic markers were evaluated in brown adipose tissue (BAT) and white adipose tissue (WAT) by western blotting, respectively. RESULTS: PNE increased hypothalamic POMC neuronal activity, and the effect was abolished by blockade of melanocortin 3/4 receptors (MC3/4Rs). PNE decreased body weight, fat mass, plasma leptin levels, and improved glucose metabolism after high-fat-induced obesity. However, PNE did not change the expression of thermogenic markers of the BAT in HFD fed groups, but decreased only the lipogenetic markers of WAT. This study suggests that PNE has a potent anti-obesity effect, inhibiting lipogenesis in WAT, even though HFD-induced leptin resistance-mediated disruption of POMC neuronal activity.

8.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256222

RESUMO

TWIK (tandem-pore domain weak inward rectifying K+)-related spinal cord K+ channel (TRESK), a member of the two-pore domain K+ channel family, is abundantly expressed in dorsal root ganglion (DRG) neurons. It is well documented that TRESK expression is changed in several models of peripheral nerve injury, resulting in a shift in sensory neuron excitability. However, the role of TRESK in the model of spinal cord injury (SCI) has not been fully understood. This study investigates the role of TRESK in a thoracic spinal cord contusion model, and in transgenic mice overexpressed with the TRESK gene (TGTRESK). Immunostaining analysis showed that TRESK was expressed in the dorsal and ventral neurons of the spinal cord. The TRESK expression was increased by SCI in both dorsal and ventral neurons. TRESK mRNA expression was upregulated in the spinal cord and DRG isolated from the ninth thoracic (T9) spinal cord contusion rats. The expression was significantly upregulated in the spinal cord below the injury site at acute time points (6, 24, and 48 h) after SCI (p < 0.05). In addition, TRESK expression was markedly increased in DRGs below and adjacent to the injury site. TRESK was expressed in inflammatory cells. In addition, the number and fluorescence intensity of TRESK-positive neurons increased in the dorsal and ventral horns of the spinal cord after SCI. TGTRESK SCI mice showed faster paralysis recovery and higher mechanical threshold compared to wild-type (WT)-SCI mice. TGTRESK mice showed lower TNF-α concentrations in the blood than WT mice. In addition, IL-1ß concentration and apoptotic signals in the caudal spinal cord and DRG were significantly decreased in TGTRESK SCI mice compared to WT-SCI mice (p < 0.05). These results indicate that TRESK upregulated following SCI contributes to the recovery of paralysis and mechanical pain threshold by suppressing the excitability of motor and sensory neurons and inflammatory and apoptotic processes.


Assuntos
Neurônios Motores/patologia , Canais de Potássio/genética , Recuperação de Função Fisiológica , Células Receptoras Sensoriais/patologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Regulação para Cima/genética , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Camundongos Endogâmicos C57BL , Neurônios Motores/metabolismo , Canais de Potássio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo
9.
Mar Drugs ; 18(10)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050644

RESUMO

Accumulative alcohol hangovers cause liver damage through oxidative and inflammatory stress. Numerous antioxidant and anti-inflammatory reagents have been developed to reduce alcohol hangovers, but these reagents are still insignificant and have limitations in that they can cause liver toxicity. Oyster hydrolysate (OH), another reagent that has antioxidant and anti-inflammatory activity, is a product extracted through an enzymatic hydrolysis process from oysters (Crassostrea gigas), which can be easily eaten in meals. This study was aimed at determining the effects of OH on alcohol metabolism, using a single high dose of ethanol (EtOH) administered to rodents, by monitoring alcohol metabolic enzymes, oxidative stress signals, and inflammatory mediators. The effect of tyrosine-alanine (YA) peptide, a main component of OH, on EtOH metabolism was also identified. In vitro experiments showed that OH pretreatment inhibited EtOH-induced cell death, oxidative stress, and inflammation in liver cells and macrophages. In vivo experiments showed that OH and YA pre-administration increased alcohol dehydrogenase, aldehyde dehydrogenase, and catalase activity in EtOH binge treatment. In addition, OH pre-administration alleviated CYP2E1 activity, ROS production, apoptotic signals, and inflammatory mediators in liver tissues. These results showed that OH and YA enhanced EtOH metabolism and had a protective effect against acute alcohol liver damage. Our findings offer new insights into a single high dose of EtOH drinking and suggest that OH and YA could be used as potential marine functional foods to prevent acute alcohol-induced liver damage.


Assuntos
Crassostrea/química , Dipeptídeos/farmacologia , Etanol/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Animais , Dipeptídeos/química , Etanol/administração & dosagem , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hidrólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
10.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143531

RESUMO

The goal of this study was to examine the effect of lipid emulsion on the vasodilation induced by ATP-sensitive potassium (KATP) channels in isolated rat aortae and the underlying mechanism. The effects of Intralipid, containing 100% long-chain fatty acids, and Lipofundin MCT/LCT, containing 50% long-chain fatty acids plus 50% medium-chain fatty acids, on the vasodilation induced by levcromakalim in endothelium-intact aorta with or without NW-nitro-L-arginine methyl ester (L-NAME) and in endothelium-denuded aorta were examined. The effects of L-arginine, L-NAME, glibenclamide, and Lipofundin MCT/LCT, alone or combined, on the levcromakalim-induced vasodilation were examined. Lipofundin MCT/LCT inhibited the levcromakalim-induced vasodilation of isolated endothelium-intact aortae, whereas Intralipid did not. In addition, Lipofundin MCT/LCT had no effect on the levcromakalim-induced vasodilation of endothelium-denuded rat aortae and endothelium-intact aortae with L-NAME. L-arginine and Lipofundin MCT/LCT produced more levcromakalim-induced vasodilation than Lipofundin MCT/LCT alone. Glibenclamide inhibited levcromakalim-induced vasodilation. Levcromakalim did not significantly alter endothelial nitric oxide synthase phosphorylation, whereas Lipofundin MCT/LCT decreased cyclic guanosine monophosphate. Lipofundin MCT/LCT did not significantly alter levcromakalim-induced membrane hyperpolarization. Taken together, these results suggest that Lipofundin MCT/LCT inhibits the vasodilation induced by levcromakalim by inhibiting basally released endothelial nitric oxide, which seems to occur through medium-chain fatty acids.


Assuntos
Ácidos Graxos/química , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfolipídeos/farmacologia , Sorbitol/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Aorta/metabolismo , Cromakalim , GMP Cíclico/metabolismo , Combinação de Medicamentos , Emulsões , Células Endoteliais/metabolismo , Masculino , Potenciais da Membrana , Fosforilação , Canais de Potássio/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Cancers (Basel) ; 12(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204484

RESUMO

Sea hare-derived compounds induce macrophage activation and reduce asthmatic parameters in mouse models of allergic asthma. These findings led us to study the role of sea hare hydrolysates (SHH) in cancer pathophysiology. SHH treatment-induced M1 macrophage activation in RAW264.7 cells, peritoneal macrophages, and THP-1 cells, as did lipopolysaccharide (LPS) (+ INF-γ), whereas SHH reduced interleukin (IL)-4 (+IL-13)-induced M2 macrophage polarization. In addition, SHH treatment inhibited the actions of M1 and M2 macrophages, which have anticancer and pro-cancer effects, respectively, in non-small cell lung cancer cells (A549 and HCC-366) and tumor-associated macrophages (TAMs). Furthermore, SHH induced G2/M phase arrest and cell death in A549 cells. SHH also downregulated STAT3 activation in macrophages and A549 cells, and the down-regulation was recovered by colivelin, a STAT3 activator. SHH-induced reduction of M2 polarization and tumor growth was blocked by colivelin treatment. SHH-induced cell death did not occur in the manner of apoptotic signaling pathways, while the death pattern was mediated through pyroptosis/necroptosis, which causes membrane rupture, formation of vacuoles and bleb, activation of caspase-1, and secretion of IL-1ß in SHH-treated A549 cells. However, a combination of SHH and colivelin blocked caspase-1 activation. Z-YVAD-FMK and necrostatin-1, pyrotosis and necroptosis inhibitors, attenuated SHH's effect on the cell viability of A549 cells. Taken together, SHH showed anticancer effects through a cytotoxic effect on A549 cells and a regulatory effect on macrophages in A549 cells. In addition, the SHH-induced anticancer effects were mediated by non-apoptotic regulated cell death pathways under STAT3 inhibition. These results suggest that SHH may be offered as a potential remedy for cancer immunotherapy.

12.
Cells ; 8(5)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091801

RESUMO

Lipid emulsion (LE) therapy has been used to reduce overdose of bupivacaine (BPV)-induced cardiotoxicity. The TWIK-related potassium channel-1 (TREK-1) is inhibited by BPV and activated by polyunsaturated fatty acids, which are the main component in LE. These pharmacological properties inspired us to investigate whether the TREK-1 channel is associated with cell viability of H9c2 cardiomyoblasts affected by BPV and LE. Consistent with previous studies, BPV-induced cell death was reduced by LE treatment. The reduction in the TREK-1 expression level by BPV was alleviated by LE. The BPV cytotoxicity highly decreased in TREK-1 overexpressed cells but was the opposite in TREK-1 knocked-down cells. TREK-1 channel activators and inhibitors increased and decreased cell viability, respectively. BPV-induced depolarization of the plasma and mitochondrial membrane potential and increase in intracellular Ca2+ level were blocked by LE treatment. BPV-induced depolarization of membrane potential was reduced in TREK-1 overexpressed cells, indicating that TREK-1 channels mediate setting the resting membrane potentials as a background K+ channel in H9c2 cells. These results show that TREK-1 activity is involved in the BPV cytotoxicity and the antagonistic effect of LE in H9c2 cells and suggest that TREK-1 could be a target for action of BPV and LE.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Lipídeos/farmacologia , Mioblastos Cardíacos/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Animais , Bupivacaína/química , Cardiotoxicidade/tratamento farmacológico , Linhagem Celular , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mioblastos Cardíacos/citologia
13.
Cell Tissue Res ; 377(2): 229-243, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30945004

RESUMO

The present study evaluates the transdifferentiation potential of different region-derived same donor Wharton's jelly MSCs (WJMSCs) into functional smooth muscle-like cells (SMLCs). All regions showed baseline expression for early smooth muscle cell (SMC) markers (αSMA and SM22-α) whereas mid marker CALPONIN gradually reduced during in vitro culture expansion and late marker myosin heavy chain type-11 (MHY-11) was completely absent. Furthermore, WJMSCs were induced to SMLCs using DMEM containing 10% FBS supplemented with different concentrations/combinations of TGF-ß1 and PDGF-BB under normoxia (20% O2) condition. Three treatment groups namely group A: 2.5 ng/ml TGF-ß1, group B: 5 ng/ml PDGF-BB and group C: 2.5 ng/ml TGF-ß1 + 5 ng/ml PDGF-BB were used for the induction of WJMSCs into SMLCs. Cells were evaluated for SMC-specific marker expression at different time intervals. Finally, selection of the SMC-specific highly potent region along with the most suitable treatment group was done on the basis of highest outcome in terms of SMC-specific marker expression and functional competence of transdifferentiated cells. Among all regions, baby region-derived WJMSCs (B-WJMSCs) exhibited highest SMC marker expression and functional ability. To mimic the in vivo physiological conditions, hypoxic conditions (3% O2) were used to evaluate the effect of low oxygen on the SMLC differentiation potential of selected WJMSCs using previously used same parameters. Annexin-V assay was performed to check the effect of cytokines and different oxygen concentrations, which revealed no significant differences. It was concluded that different induction conditions have different but positive effects on the functional SMLC differentiation ability of WJMSCs.


Assuntos
Diferenciação Celular , Transdiferenciação Celular , Células-Tronco Mesenquimais , Miócitos de Músculo Liso , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Músculo Liso/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cordão Umbilical/citologia , Geleia de Wharton/citologia
14.
J Nanosci Nanotechnol ; 19(6): 3558-3563, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30744785

RESUMO

In recent years, noise has become a serious hazard and can have permanent biological and psychological effects on humans and other organisms in nature. Textile materials are commonly used as absorbent acoustic materials for noise reduction. This work examines the use of electrospun nylon-6 and polyurethane nanofibres (PU NFs) to improve the sound absorption and sound insulation properties of polyurethane foam. In this work, nylon-6 and polyurethane nanofibres were prepared by an electrospinning technique and were glued to a polyurethane foam. The sound absorption coefficient of the materials was measured by the impedance tube method. An impedance tube was used to measure the sound absorption and airborne sound insulation. The results showed decreased sound absorption properties, whereas the sound insulation was highly enhanced when polyurethane/nanofibre hybrids were used, as compared to the pristine polyurethane foam. Furthermore, the sound insulation properties of polyurethane foam were highly enhanced when the foam was combined with nylon-6 NFs, compared with the polyurethane foam with PU NFs. Therefore, by investigating the acoustic characteristics of electrospun nylon-6 and PU nanofibres, we believe that this study can broaden the application of electrospun nanofibres for sound pollution control.


Assuntos
Caprolactama , Nanofibras , Caprolactama/análogos & derivados , Humanos , Polímeros , Poliuretanos
15.
Nat Commun ; 10(1): 787, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770809

RESUMO

Mutations that modulate the activity of ion channels are essential tools to understand the biophysical determinants that control their gating. Here, we reveal the conserved role played by a single amino acid position (TM2.6) located in the second transmembrane domain of two-pore domain potassium (K2P) channels. Mutations of TM2.6 to aspartate or asparagine increase channel activity for all vertebrate K2P channels. Using two-electrode voltage-clamp and single-channel recording techniques, we find that mutation of TM2.6 promotes channel gating via the selectivity filter gate and increases single channel open probability. Furthermore, channel gating can be progressively tuned by using different amino acid substitutions. Finally, we show that the role of TM2.6 was conserved during evolution by rationally designing gain-of-function mutations in four Caenorhabditis elegans K2P channels using CRISPR/Cas9 gene editing. This study thus describes a simple and powerful strategy to systematically manipulate the activity of an entire family of potassium channels.


Assuntos
Potenciais da Membrana/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Drosophila , Evolução Molecular , Humanos , Invertebrados , Potenciais da Membrana/genética , Mutação/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Vertebrados
16.
Cancers (Basel) ; 11(1)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634506

RESUMO

Depression is more common in women with breast cancer than the general population. Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are widely used for the treatment of patients with depression and a range of anxiety-related disorders. The association between the use of antidepressant medication and breast cancer is controversial. In this study, we investigated whether and how SSRIs induce the death of human breast cancer MCF-7 cells. Of the antidepressants tested in this study (amitriptyline, bupropion, fluoxetine, paroxetine, and tianeptine), paroxetine most reduced the viability of MCF-7 cells in a time-and dose-dependent manner. The exposure of MCF-7 cells to paroxetine resulted in mitochondrion-mediated apoptosis, which is assessed by increase in the number of cells with sub-G1 DNA content, caspase-8/9 activation, poly (ADP-ribose) polymerase cleavage, and Bax/Bcl-2 ratio and a reduction in the mitochondrial membrane potential. Paroxetine increased a generation of reactive oxygen species (ROS), intracellular Ca2+ levels, and p38 MAPK activation. The paroxetine-induced apoptotic events were reduced by ROS scavengers and p38 MAPK inhibitor, and the paroxetine's effect was dependent on extracellular Ca2+ level. Paroxetine also showed a synergistic effect on cell death induced by chemotherapeutic drugs in MCF-7 and MDA-MB-231 cells. Our results showed that paroxetine induced apoptosis of human breast cancer MCF-7 cells through extracellular Ca2+-and p38 MAPK-dependent ROS generation. These results suggest that paroxetine may serve as an anticancer adjuvant to current cancer therapies for breast cancer patients with or without depression.

17.
Adv Exp Med Biol ; 1071: 35-41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357731

RESUMO

Glomus cells isolated from rabbit and rat/mouse carotid bodies have been used for many years to study the role of ion channels in hypoxia sensing. Studies show that hypoxia inhibits the inactivating K+ channels (Kv4) in rabbits, but inhibits TASK in rats/mice to elicit the hypoxic response. Because the role of TASK in rabbit glomus cells is not known, we isolated glomus cells from rabbits and studied the expression of TASK mRNA in the whole carotid body (CB), changes in [Ca2+]i and TASK activity. RT-PCR showed that rabbit CB expressed mRNA for TASK-3 and several Kv (Kv2.1, Kv3.1 and Kv3.3). In rabbit glomus cells in which 20 mM KClo elevated [Ca2+], anoxia also elicited a strong rise in [Ca2+]. In cell-attached patches with 140 mM KCl in the pipette, basal openings of ion channels with single-channel conductance levels of 16-pS, 34-pS, and 42-pS were present. TREK-like channels were also observed. In inside-out patches with high [Ca2+]i, BK was activated. The 42-pS channel opened spontaneously and briefly. The 16-pS and 34-pS channels showed properties similar to those of TASK-1 and TASK-3, respectively. TASK activity in cell-attached patches was lower than that in rat glomus cells under identical recording conditions. Hypoxia (~0.5%O2) reduced TASK activity by ~52% and depolarized the cells by ~30 mV. Our results show that the O2-sensitive TASK contributes to the hypoxic response in rabbit glomus cells.


Assuntos
Corpo Carotídeo/citologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Animais , Cálcio/fisiologia , Hipóxia Celular , Potenciais da Membrana , Camundongos , Proteínas do Tecido Nervoso , Técnicas de Patch-Clamp , Coelhos , Ratos
18.
Front Mol Neurosci ; 11: 301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233308

RESUMO

TREK/TRAAK channels are polymodal K+ channels that convert very diverse stimuli, including bioactive lipids, mechanical stretch and temperature, into electrical signals. The nature of the structural changes that regulate their activity remains an open question. Here, we show that a cytoplasmic domain (the proximal C-ter domain, pCt) exerts antagonistic effects in TREK1 and TRAAK. In basal conditions, pCt favors activity in TREK1 whereas it impairs TRAAK activity. Using the conformation-dependent binding of fluoxetine, we show that TREK1 and TRAAK conformations at rest are different, and under the influence of pCt. Finally, we show that depleting PIP2 in live cells has a more pronounced inhibitory effect on TREK1 than on TRAAK. This differential regulation of TREK1 and TRAAK is related to a previously unrecognized PIP2-binding site (R329, R330, and R331) present within TREK1 pCt, but not in TRAAK pCt. Collectively, these new data point out pCt as a major regulatory domain of these channels and suggest that the binding of PIP2 to the pCt of TREK1 results in the stabilization of the conductive conformation in basal conditions.

19.
Cells ; 7(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241326

RESUMO

This study aimed to examine the effect of lipid emulsion on the cardiotoxicity induced by doxorubicin in H9c2 rat cardiomyoblasts and elucidates the associated cellular mechanism. The effects of lipid emulsion on cell viability, Bax, cleaved caspase-8, cleaved capase-3, Bcl-XL, apoptosis, reactive oxygen species (ROS), malondialdehyde, superoxide dismutase (SOD), catalase and mitochondrial membrane potential induced by doxorubicin were examined. Treatment with doxorubicin decreased cell viability, whereas pretreatment with lipid emulsion reduced the effect of doxorubicin by increasing cell viability. Lipid emulsion also suppressed the increased expression of cleaved caspase-3, cleaved caspase-8, and Bax induced by doxorubicin. Moreover, pretreatment with lipid emulsion decreased the increased Bax/Bcl-XL ratio induced by doxorubicin. Doxorubicin-induced late apoptosis was reduced by treatment with lipid emulsion. In addition, pretreatment with lipid emulsion prior to doxorubicin enhanced glycogen synthase kinase-3ß phosphorylation. The increased malondialdehyde and ROS levels by doxorubicin were reduced by lipid emulsion pretreatment. Furthermore, lipid emulsion attenuated the reduced SOD and catalase activity and the decreased mitochondrial membrane potential induced by doxorubicin. Taken together, these results suggest that lipid emulsion attenuates doxorubicin-induced late apoptosis, which appears to be associated with the inhibition of oxidative stress induced by doxorubicin.

20.
PLoS One ; 13(8): e0202422, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30125325

RESUMO

We examined the changes in thyroid hormone levels in patients with an acute clinical condition and compared these to levels in the healthy subjects. Serum total triiodothyronine (T3), thyroid stimulating hormone (TSH), and free thyroxine (fT4) measurements were recorded from 555 patients (mean age: 55.0 years, men: 65.9%) admitted to the emergency department (ED) 1-91 months (median: 34 months) after a regular health examination (HE). Serological data were analyzed; mean change in hormone levels was stratified by emergency classification system and quintiles of changes in inflammatory marker values, such as neutrophil lymphocyte ratio (NLR) and high-sensitivity C-reactive protein (CRP). The mean decrease in T3 levels from HE and ED samples was 10.6 ng/dL (p< 0.001). Mean decrease in T3 levels was 21.6 ng/dL among patients classified as having an infection status and 11.0 ng/dL among patients classified as having an urgency status. A decrease 3.7 ng/dL among emergency patients was observed. TSH and fT4 levels did not change across all groups. When patients were stratified into quintiles according to changes in NLR values, mean decreases in T3 were 6.21, 8.14, 14.37, 12.76, and 21.98 ng/dL and showed significant linear reduction (p<0.001). For quintiles of changed CRP values, mean decreased T3 levels were 10.57, 3.05, 4.47, 7.68, and 28.07 ng/dL. TSH and fT4 were not associated with significant changes (p = 0.100, p = 0.561, respectively). In this study, thyroid function changes in individuals with an acute condition revealed that T3 significantly decreased, more markedly in infectious diseases compared to their healthy counterparts, and decline in T3 measurements correlated with inflammatory markers. TSH and fT4 levels remained stable. It is necessary to consider the severity of acute conditions when abnormal T3 levels are detected in subjects with emergent status.


Assuntos
Doenças da Glândula Tireoide/sangue , Testes de Função Tireóidea , Tireotropina/sangue , Tiroxina/sangue , Tri-Iodotironina/sangue , Adulto , Idoso , Serviço Hospitalar de Emergência , Feminino , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...