Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Commun ; 12(1): 5071, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417470

RESUMO

Identification of causal variants and genes underlying genome-wide association study (GWAS) loci is essential to understand the biology of alcohol use disorder (AUD) and drinks per week (DPW). Multi-omics integration approaches have shown potential for fine mapping complex loci to obtain biological insights to disease mechanisms. In this study, we use multi-omics approaches, to fine-map AUD and DPW associations at single SNP resolution to demonstrate that rs56030824 on chromosome 11 significantly reduces SPI1 mRNA expression in myeloid cells and lowers risk for AUD and DPW. Our analysis also identifies MAPT as a candidate causal gene specifically associated with DPW. Genes prioritized in this study show overlap with causal genes associated with neurodegenerative disorders. Multi-omics integration analyses highlight, genetic similarities and differences between alcohol intake and disordered drinking, suggesting molecular heterogeneity that might inform future targeted functional and cross-species studies.


Assuntos
Alcoolismo/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Doenças Neurodegenerativas/genética , Encéfalo/metabolismo , Epigênese Genética , Feto/metabolismo , Redes Reguladoras de Genes , Loci Gênicos , Marcadores Genéticos , Humanos , Desequilíbrio de Ligação/genética , Análise da Randomização Mendeliana , Mapeamento Físico do Cromossomo , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética
2.
Psychol Med ; : 1-9, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34231451

RESUMO

BACKGROUND: Alcohol use disorder (AUD) and schizophrenia (SCZ) frequently co-occur, and large-scale genome-wide association studies (GWAS) have identified significant genetic correlations between these disorders. METHODS: We used the largest published GWAS for AUD (total cases = 77 822) and SCZ (total cases = 46 827) to identify genetic variants that influence both disorders (with either the same or opposite direction of effect) and those that are disorder specific. RESULTS: We identified 55 independent genome-wide significant single nucleotide polymorphisms with the same direction of effect on AUD and SCZ, 8 with robust effects in opposite directions, and 98 with disorder-specific effects. We also found evidence for 12 genes whose pleiotropic associations with AUD and SCZ are consistent with mediation via gene expression in the prefrontal cortex. The genetic covariance between AUD and SCZ was concentrated in genomic regions functional in brain tissues (p = 0.001). CONCLUSIONS: Our findings provide further evidence that SCZ shares meaningful genetic overlap with AUD.

3.
Genes Brain Behav ; : e12738, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893716

RESUMO

The National Institute on Drug Abuse and Joint Institute for Biological Sciences at the Oak Ridge National Laboratory hosted a meeting attended by a diverse group of scientists with expertise in substance use disorders (SUDs), computational biology, and FAIR (Findability, Accessibility, Interoperability, and Reusability) data sharing. The meeting's objective was to discuss and evaluate better strategies to integrate genetic, epigenetic, and 'omics data across human and model organisms to achieve deeper mechanistic insight into SUDs. Specific topics were to (a) evaluate the current state of substance use genetics and genomics research and fundamental gaps, (b) identify opportunities and challenges of integration and sharing across species and data types, (c) identify current tools and resources for integration of genetic, epigenetic, and phenotypic data, (d) discuss steps and impediment related to data integration, and (e) outline future steps to support more effective collaboration-particularly between animal model research communities and human genetics and clinical research teams. This review summarizes key facets of this catalytic discussion with a focus on new opportunities and gaps in resources and knowledge on SUDs.

4.
Nat Commun ; 12(1): 1610, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712570

RESUMO

Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer's disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Genômica , Células Mieloides , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Doença de Alzheimer/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos , Microglia/metabolismo , Transcriptoma
5.
Am J Med Genet B Neuropsychiatr Genet ; 186(3): 151-161, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32652861

RESUMO

African Americans (AA) have lower prevalence of alcohol dependence and higher subjective response to alcohol than European Americans. Genome-wide association studies (GWAS) have identified genes/variants associated with alcohol dependence specifically in AA; however, the sample sizes are still not large enough to detect variants with small effects. Admixture mapping is an alternative way to identify alcohol dependence genes/variants that may be unique to AA. In this study, we performed the first admixture mapping of DSM-IV alcohol dependence diagnosis, DSM-IV alcohol dependence criterion count, and two scores from the self-rating of effects of ethanol (SRE) as measures of response to alcohol: the first five times of using alcohol (SRE-5) and average of SRE across three times (SRE-T). Findings revealed a region on chromosome 4 that was genome-wide significant for SRE-5 (p value = 4.18E-05). Fine mapping did not identify a single causal variant to be associated with SRE-5; instead, conditional analysis concluded that multiple variants collectively explained the admixture mapping signal. PPARGC1A, a gene that has been linked to alcohol consumption in previous studies, is located in this region. Our finding suggests that admixture mapping is a useful tool to identify genes/variants that may have been missed by current GWAS approaches in admixed populations.

6.
Mol Psychiatry ; 26(4): 1142-1151, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31477794

RESUMO

Genome-wide association studies (GWAS) of complex traits, such as alcohol use disorders (AUD), usually identify variants in non-coding regions and cannot by themselves distinguish whether the associated variants are functional or in linkage disequilibrium with the functional variants. Transcriptome studies can identify genes whose expression differs between alcoholics and controls. To test which variants associated with AUD may cause expression differences, we integrated data from deep RNA-seq and GWAS of four postmortem brain regions from 30 subjects with AUD and 30 controls to analyze allele-specific expression (ASE). We identified 88 genes with differential ASE in subjects with AUD compared to controls. Next, to test one potential mechanism contributing to the differential ASE, we analyzed single nucleotide polymorphisms (SNPs) in the 3' untranslated regions (3'UTR) of these genes. Of the 88 genes with differential ASE, 61 genes contained 437 SNPs in the 3'UTR with at least one heterozygote among the subjects studied. Using a modified PASSPORT-seq (parallel assessment of polymorphisms in miRNA target-sites by sequencing) assay, we identified 25 SNPs that affected RNA levels in a consistent manner in two neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Many of these SNPs are in binding sites of miRNAs and RNA-binding proteins, indicating that these SNPs are likely causal variants of AUD-associated differential ASE. In sum, we demonstrate that a combination of computational and experimental approaches provides a powerful strategy to uncover functionally relevant variants associated with the risk for AUD.


Assuntos
Alcoolismo , Estudo de Associação Genômica Ampla , Regiões 3' não Traduzidas/genética , Alcoolismo/genética , Alelos , Predisposição Genética para Doença/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
7.
Mol Psychiatry ; 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433515

RESUMO

Aberrant connectivity of large-scale brain networks has been observed among individuals with alcohol use disorders (AUDs) as well as in those at risk, suggesting deficits in neural communication between brain regions in the liability to develop AUD. Electroencephalographical (EEG) coherence, which measures the degree of synchrony between brain regions, may be a useful measure of connectivity patterns in neural networks for studying the genetics of AUD. In 8810 individuals (6644 of European and 2166 of African ancestry) from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed a Multi-Trait Analyses of genome-wide association studies (MTAG) on parietal resting-state theta (3-7 Hz) EEG coherence, which previously have been associated with AUD. We also examined developmental effects of GWAS findings on trajectories of neural connectivity in a longitudinal subsample of 2316 adolescent/young adult offspring from COGA families (ages 12-30) and examined the functional and clinical significance of GWAS variants. Six correlated single nucleotide polymorphisms located in a brain-expressed lincRNA (ENSG00000266213) on chromosome 18q23 were associated with posterior interhemispheric low theta EEG coherence (3-5 Hz). These same variants were also associated with alcohol use behavior and posterior corpus callosum volume, both in a subset of COGA and in the UK Biobank. Analyses in the subsample of COGA offspring indicated that the association of rs12954372 with low theta EEG coherence occurred only in females, most prominently between ages 25 and 30 (p < 2 × 10-9). Converging data provide support for the role of genetic variants on chromosome 18q23 in regulating neural connectivity and alcohol use behavior, potentially via dysregulated myelination. While findings were less robust, genome-wide associations were also observed with rs151174000 and parieto-frontal low theta coherence, rs14429078 and parieto-occipital interhemispheric high theta coherence, and rs116445911 with centro-parietal low theta coherence. These novel genetic findings highlight the utility of the endophenotype approach in enhancing our understanding of mechanisms underlying addiction susceptibility.

8.
Hum Mol Genet ; 29(7): 1144-1153, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32142123

RESUMO

Alcoholism remains a prevalent health concern throughout the world. Previous studies have identified transcriptomic patterns in the brain associated with alcohol dependence in both humans and animal models. But none of these studies have systematically investigated expression within the unique cell types present in the brain. We utilized single nucleus RNA sequencing (snRNA-seq) to examine the transcriptomes of over 16 000 nuclei isolated from the prefrontal cortex of alcoholic and control individuals. Each nucleus was assigned to one of seven major cell types by unsupervised clustering. Cell type enrichment patterns varied greatly among neuroinflammatory-related genes, which are known to play roles in alcohol dependence and neurodegeneration. Differential expression analysis identified cell type-specific genes with altered expression in alcoholics. The largest number of differentially expressed genes (DEGs), including both protein-coding and non-coding, were detected in astrocytes, oligodendrocytes and microglia. To our knowledge, this is the first single cell transcriptome analysis of alcohol-associated gene expression in any species and the first such analysis in humans for any addictive substance. These findings greatly advance the understanding of transcriptomic changes in the brain of alcohol-dependent individuals.

9.
Addict Biol ; 25(2): e12800, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270906

RESUMO

The level of response (LR) to alcohol as measured with the Self-Report of the Effects of Alcohol Retrospective Questionnaire (SRE) evaluates the number of standard drinks usually required for up to four effects. The need for a higher number of drinks for effects is genetically influenced and predicts higher risks for heavy drinking and alcohol problems. We conducted genome-wide association study (GWAS) in the African-American (COGA-AA, N = 1527 from 309 families) and European-American (COGA-EA, N = 4723 from 956 families) subsamples of the Collaborative Studies on the Genetics of Alcoholism (COGA) for two SRE scores: SRE-T (average of first five times of drinking, the period of heaviest drinking, and the most recent 3 months of consumption) and SRE-5 (the first five times of drinking). We then meta-analyzed the two COGA subsamples (COGA-AA + EA). Both SRE-T and SRE-5 were modestly heritable (h2 : 21%-31%) and genetically correlated with alcohol dependence (AD) and DSM-IV AD criterion count (rg : 0.35-0.76). Genome-wide significant associations were observed (SRE-T: chromosomes 6, rs140154945, COGA-EA P = 3.30E-08 and 11, rs10647170, COGA-AA+EA P = 3.53E-09; SRE-5: chromosome13, rs4770359, COGA-AA P = 2.92E-08). Chromosome 11 was replicated in an EA dataset from the National Institute on Alcohol Abuse and Alcoholism intramural program. In silico functional analyses and RNA expression analyses suggest that the chromosome 6 locus is an eQTL for KIF25. Polygenic risk scores derived using the COGA SRE-T and SRE-5 GWAS predicted 0.47% to 2.48% of variances in AD and DSM-IV AD criterion count in independent datasets. This study highlights the genetic contribution of alcohol response phenotypes to the etiology of alcohol use disorders.


Assuntos
Alcoolismo/genética , Etanol/farmacologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Autorrelato , Inquéritos e Questionários/estatística & dados numéricos , Afro-Americanos/estatística & dados numéricos , Grupo com Ancestrais do Continente Europeu/estatística & dados numéricos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Estudos Retrospectivos
10.
Brain Sci ; 9(10)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627376

RESUMO

Differences in the connectivity of large-scale functional brain networks among individuals with alcohol use disorders (AUD), as well as those at risk for AUD, point to dysfunctional neural communication and related cognitive impairments. In this study, we examined how polygenic risk scores (PRS), derived from a recent GWAS of DSM-IV Alcohol Dependence (AD) conducted by the Psychiatric Genomics Consortium, relate to longitudinal measures of interhemispheric and intrahemispheric EEG connectivity (alpha, theta, and beta frequencies) in adolescent and young adult offspring from the Collaborative Study on the Genetics of Alcoholism (COGA) assessed between ages 12 and 31. Our findings indicate that AD PRS (p-threshold < 0.001) was associated with increased fronto-central, tempo-parietal, centro-parietal, and parietal-occipital interhemispheric theta and alpha connectivity in males only from ages 18-31 (beta coefficients ranged from 0.02-0.06, p-values ranged from 10-6-10-12), but not in females. Individuals with higher AD PRS also demonstrated more performance deficits on neuropsychological tasks (Tower of London task, visual span test) as well as increased risk for lifetime DSM-5 alcohol and opioid use disorders. We conclude that measures of neural connectivity, together with neurocognitive performance and substance use behavior, can be used to further understanding of how genetic risk variants from large GWAS of AUD may influence brain function. In addition, these data indicate the importance of examining sex and developmental effects, which otherwise may be masked. Understanding of neural mechanisms linking genetic variants emerging from GWAS to risk for AUD throughout development may help to identify specific points when neurocognitive prevention and intervention efforts may be most effective.

11.
Genes Brain Behav ; 18(6): e12579, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31090166

RESUMO

Genome-wide association studies (GWAS) of alcohol dependence (AD) have reliably identified variation within alcohol metabolizing genes (eg, ADH1B) but have inconsistently located other signals, which may be partially attributable to symptom heterogeneity underlying the disorder. We conducted GWAS of DSM-IV AD (primary analysis), DSM-IV AD criterion count (secondary analysis), and individual dependence criteria (tertiary analysis) among 7418 (1121 families) European American (EA) individuals from the Collaborative Study on the Genetics of Alcoholism (COGA). Trans-ancestral meta-analyses combined these results with data from 3175 (585 families) African-American (AA) individuals from COGA. In the EA GWAS, three loci were genome-wide significant: rs1229984 in ADH1B for AD criterion count (P = 4.16E-11) and Desire to cut drinking (P = 1.21E-11); rs188227250 (chromosome 8, Drinking more than intended, P = 6.72E-09); rs1912461 (chromosome 15, Time spent drinking, P = 1.77E-08). In the trans-ancestral meta-analysis, rs1229984 was associated with multiple phenotypes and two additional loci were genome-wide significant: rs61826952 (chromosome 1, DSM-IV AD, P = 8.42E-11); rs7597960 (chromosome 2, Time spent drinking, P = 1.22E-08). Associations with rs1229984 and rs18822750 were replicated in independent datasets. Polygenic risk scores derived from the EA GWAS of AD predicted AD in two EA datasets (P < .01; 0.61%-1.82% of variance). Identified novel variants (ie, rs1912461, rs61826952) were associated with differential central evoked theta power (loss - gain; P = .0037) and reward-related ventral striatum reactivity (P = .008), respectively. This study suggests that studying individual criteria may unveil new insights into the genetic etiology of AD liability.


Assuntos
Alcoolismo/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Afro-Americanos/genética , Álcool Desidrogenase/genética , Alcoolismo/fisiopatologia , Manual Diagnóstico e Estatístico de Transtornos Mentais , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Humanos , Masculino , Recompensa , Ritmo Teta , Estriado Ventral/fisiopatologia
12.
Transl Psychiatry ; 9(1): 89, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765688

RESUMO

Alcohol exposure triggers changes in gene expression and biological pathways in human brain. We explored alterations in gene expression in the Pre-Frontal Cortex (PFC) of 65 alcoholics and 73 controls of European descent, and identified 129 genes that showed altered expression (FDR < 0.05) in subjects with alcohol dependence. Differentially expressed genes were enriched for pathways related to interferon signaling and Growth Arrest and DNA Damage-inducible 45 (GADD45) signaling. A coexpression module (thistle2) identified by weighted gene co-expression network analysis (WGCNA) was significantly correlated with alcohol dependence, alcohol consumption, and AUDIT scores. Genes in the thistle2 module were enriched with genes related to calcium signaling pathways and showed significant downregulation of these pathways, as well as enrichment for biological processes related to nicotine response and opioid signaling. A second module (brown4) showed significant upregulation of pathways related to immune signaling. Expression quantitative trait loci (eQTLs) for genes in the brown4 module were also enriched for genetic associations with alcohol dependence and alcohol consumption in large genome-wide studies included in the Psychiatric Genetic Consortium and the UK Biobank's alcohol consumption dataset. By leveraging multi-omics data, this transcriptome analysis has identified genes and biological pathways that could provide insight for identifying therapeutic targets for alcohol dependence.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Regulação da Expressão Gênica , Transcriptoma , Adulto , Idoso , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/metabolismo , Autopsia , Estudos de Casos e Controles , Etanol/metabolismo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , New South Wales , Córtex Pré-Frontal/metabolismo , Locos de Características Quantitativas
13.
Alcohol ; 79: 81-91, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30639126

RESUMO

The short-term effects of alcohol on gene expression in brain tissue cannot directly be studied in humans. Because neuroimmune signaling is altered by alcohol, immune cells are a logical, accessible choice to study and may provide biomarkers. RNAseq was used to study the effects of 48-h exposure to ethanol on lymphoblastoid cell lines (LCLs) from 20 alcoholic subjects and 20 control subjects. Ethanol exposure resulted in differential expression of 4456 of the 12,503 genes detectably expressed in the LCLs (FDR [false discovery rate] ≤ 0.05); 52% of these showed increased expression. Cells from alcoholic subjects and control subjects responded similarly. The genes whose expression changed fell into many pathways: NFκB, neuroinflammation, IL6, IL2, IL8, and dendritic cell maturation pathways were activated, consistent with increased signaling by NFκB, TNF, IL1, IL4, IL18, TLR4, and LPS. Signaling by Interferons A and B decreased, as did EIF2 signaling, phospholipase C signaling, and glycolysis. Baseline gene expression patterns were similar in LCLs from alcoholic subjects and control subjects. At relaxed stringency (p < 0.05), 465 genes differed, 230 of which were also affected by ethanol. There was a suggestion of compensation because baseline differences (no ethanol) were in the opposite direction of differences due to ethanol exposure in 78% of these genes. Pathways with IL8, phospholipase C, and α-adrenergic signaling were significant. The pattern of expression was consistent with increased signaling by several cytokines, including interferons, TLR2, and TLR3 in alcoholics. Expression of genes in the cholesterol biosynthesis pathway, including the rate-limiting enzyme HMGCR, was lower in alcoholic subjects. LCLs show many effects of ethanol exposure, some of which might provide biomarkers for alcohol use disorders. Identifying genes and pathways altered by ethanol can aid in interpreting which genes within loci identified by GWAS might play functional roles.


Assuntos
Alcoolismo/imunologia , Etanol/farmacologia , Linfócitos/efeitos dos fármacos , Transdução de Sinais , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/efeitos dos fármacos , Estudos de Casos e Controles , Linhagem Celular , Colesterol/biossíntese , Mapeamento Cromossômico , Citocinas/imunologia , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimunomodulação/efeitos dos fármacos , RNA-Seq , Ratos
14.
Biol Psychiatry ; 85(11): 946-955, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30679032

RESUMO

BACKGROUND: Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences and to contribute to disease risk. METHODS: We analyzed ∼250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative causal variants within associated loci. RESULTS: Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible intervals. CONCLUSIONS: Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of substance use behavior.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Exoma , Variação Genética/fisiologia , Fumar/fisiopatologia , Consumo de Bebidas Alcoólicas/genética , Bases de Dados Genéticas , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Genótipo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fumar/genética
15.
PLoS Genet ; 14(11): e1007427, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30388101

RESUMO

Paired Immunoglobulin-like Type 2 Receptor Alpha (PILRA) is a cell surface inhibitory receptor that recognizes specific O-glycosylated proteins and is expressed on various innate immune cell types including microglia. We show here that a common missense variant (G78R, rs1859788) of PILRA is the likely causal allele for the confirmed Alzheimer's disease risk locus at 7q21 (rs1476679). The G78R variant alters the interaction of residues essential for sialic acid engagement, resulting in >50% reduced binding for several PILRA ligands including a novel ligand, complement component 4A, and herpes simplex virus 1 (HSV-1) glycoprotein B. PILRA is an entry receptor for HSV-1 via glycoprotein B, and macrophages derived from R78 homozygous donors showed significantly decreased levels of HSV-1 infection at several multiplicities of infection compared to homozygous G78 macrophages. We propose that PILRA G78R protects individuals from Alzheimer's disease risk via reduced inhibitory signaling in microglia and reduced microglial infection during HSV-1 recurrence.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Variação Genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Substituição de Aminoácidos , Animais , Loci Gênicos , Humanos , Ligantes , Glicoproteínas de Membrana/química , Camundongos , Modelos Biológicos , Conformação Molecular , Ligação Proteica , Locos de Características Quantitativas , Receptores Imunológicos/química , Relação Estrutura-Atividade
16.
Alzheimers Dement ; 14(2): 205-214, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28943286

RESUMO

OBJECTIVE: To determine whether the extent of overlap of the genetic architecture among the sporadic late-onset Alzheimer's Disease (sLOAD), familial late-onset AD (fLOAD), sporadic early-onset AD (sEOAD), and autosomal dominant early-onset AD (eADAD). METHODS: Polygenic risk scores (PRSs) were constructed using previously identified 21 genome-wide significant loci for LOAD risk. RESULTS: We found that there is an overlap in the genetic architecture among sEOAD, fLOAD, and sLOAD. The highest association of the PRS and risk (odds ratio [OR] = 2.27; P = 1.29 × 10-7) was observed in sEOAD, followed by fLOAD (OR = 1.75; P = 1.12 × 10-7) and sLOAD (OR = 1.40; P = 1.21 × 10-3). The PRS was associated with cerebrospinal fluid ptau181-Aß42 on eADAD (P = 4.36 × 10-2). CONCLUSION: Our analysis confirms that the genetic factors identified for LOAD modulate risk in sLOAD and fLOAD and also sEOAD cohorts. Specifically, our results suggest that the burden of these risk variants is associated with familial clustering and earlier onset of AD. Although these variants are not associated with risk in the eADAD, they may be modulating age at onset.


Assuntos
Doença de Alzheimer/classificação , Doença de Alzheimer/genética , Saúde da Família , Predisposição Genética para Doença/genética , Herança Multifatorial/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteínas E/genética , Estudos de Coortes , Bases de Dados Bibliográficas/estatística & dados numéricos , Feminino , Genótipo , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fragmentos de Peptídeos/líquido cefalorraquidiano , Curva ROC , Proteínas tau/líquido cefalorraquidiano
17.
Nat Neurosci ; 20(8): 1052-1061, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628103

RESUMO

A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Alelos , Animais , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Desequilíbrio de Ligação/genética , Masculino , Camundongos , Fatores de Risco , Fatores de Transcrição/genética
18.
Acta Neuropathol ; 133(5): 839-856, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28247064

RESUMO

More than 20 genetic loci have been associated with risk for Alzheimer's disease (AD), but reported genome-wide significant loci do not account for all the estimated heritability and provide little information about underlying biological mechanisms. Genetic studies using intermediate quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power to identify variants that may not pass the stringent multiple test correction in case-control studies. Endophenotypes also contain additional information helpful for identifying variants and genes associated with other aspects of disease, such as rate of progression or onset, and provide context to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of amyloid beta (Aß42), tau, and phosphorylated tau (ptau181) levels in cerebrospinal fluid (CSF) from 3146 participants across nine studies to identify novel variants associated with AD. Five genome-wide significant loci (two novel) were associated with ptau181, including loci that have also been associated with AD risk or brain-related phenotypes. Two novel loci associated with Aß42 near GLIS1 on 1p32.3 (ß = -0.059, P = 2.08 × 10-8) and within SERPINB1 on 6p25 (ß = -0.025, P = 1.72 × 10-8) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 × 10-2), disease progression (GLIS1: ß = 0.277, P = 1.92 × 10-2), and age at onset (SERPINB1: ß = 0.043, P = 4.62 × 10-3). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that SERPINB1 influences AD through an Aß-associated mechanism. Analyses of known AD risk loci suggest CLU and FERMT2 may influence CSF Aß42 (P = 0.001 and P = 0.009, respectively) and the INPP5D locus may affect ptau181 levels (P = 0.009); larger studies are necessary to verify these results. Together the findings from this study can be used to inform future AD studies.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas tau/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Apolipoproteínas E/genética , Biomarcadores/análise , Progressão da Doença , Endofenótipos/líquido cefalorraquidiano , Loci Gênicos , Genótipo , Humanos , Pessoa de Meia-Idade , Fatores de Risco , Proteínas tau/líquido cefalorraquidiano
19.
JCI Insight ; 2(4): e88226, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28239647

RESUMO

HIV-1 viremic controllers (VC) spontaneously control infection without antiretroviral treatment. Several studies indicate that IgG Abs from VCs induce enhanced responses from immune effector cells. Since signaling through Fc-γ receptors (FCGRs) modulate these Ab-driven responses, here we examine if enhanced FCGR activation is a common feature of IgG from VCs. Using an infected cell-based system, we observed that VC IgG stimulated greater FCGR2A and FCGR3A activation as compared with noncontrollers, independent of the magnitude of HIV-specific Ab binding or virus neutralization activities. Multivariate regression analysis showed that enhanced FCGR signaling was a significant predictor of VC status as compared with chronically infected patients (CIP) on highly active antiretroviral therapy (HAART). Unsupervised hierarchical clustering of patient IgG functions primarily grouped VC IgG profiles by enhanced FCGR2A, FCGR3A, or dual signaling activity. Our findings demonstrate that enhanced FCGR signaling is a common and significant predictive feature of VC IgG, with VCs displaying a distinct spectrum of FCGR activation profiles. Thus, profiling FCGR activation may provide a useful method for screening and distinguishing protective anti-HIV IgG responses in HIV-infected patients and in monitoring HIV vaccination regimens.


Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Imunoglobulina G/imunologia , Receptores de IgG/imunologia , Viremia/imunologia , Terapia Antirretroviral de Alta Atividade , Resistência à Doença , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...