Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hum Genet ; 64(10): 1051-1054, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31388109

RESUMO

Rapid progress has recently been made in the elucidation of the genetic basis of childhood-onset inherited generalized dystonia (IGD) due to the implementation of genomic sequencing methodologies. We identified four patients with childhood-onset IGD harboring novel disease-causing mutations in lysine-specific histone methyltransferase 2B gene (KMT2B) by whole-exome sequencing. The main focus of this paper is to gain novel pathophysiological insights through understanding the molecular consequences of these mutations.The disease course is mostly progressive, evolving from lower limbs into generalized dystonia, which could be associated with dysarthria, dysphonia, intellectual disability, orofacial dyskinesia, and sometimes distinct dysmorphic facial features. In two patients, motor performances improved after bilateral implantation of deep brain stimulation in the globus pallidus internus (GPi-DBS). Pharmacotherapy with trihexyphenidyl reduced dystonia in two patients.We discovered three novel KMT2B mutations. Our analyses revealed that the mutation in patient 1 (c.7463 A > G, p.Y2488C) is localized in the highly conserved FYRC domain of KMT2B. This mutation holds the potential to alter the inter-domain FYR interactions, which could lead to KMT2B instability. The mutations in patients 2 and 3 (c.3602dupC, p.M1202Dfs*22; c.4229delA, p.Q1410Rfs*12) lead to predicted unstable transcripts, likely to be subject to degradation by non-sense mediated decay.Childhood-onset progressive dystonia with orofacial involvement is one of the main clinical manifestations of KMT2B mutations. In all, 26% (18/69) of the reported cases have T2 signal alterations of the globus pallidus internus, mostly at a younger age. Anticholinergic medication and GPi-DBS are promising treatment options and shall be considered early.An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Oxid Med Cell Longev ; 2019: 8683054, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396307

RESUMO

The plant innate immune system has two major branches, the pathogen-triggered immunity and the effector-triggered immunity (ETI). The effectors are molecules released by plant attackers to evade host immunity. In addition to the foreign intruders, plants possess endogenous instigators produced in response to general cellular injury termed as damage-associated molecular patterns (DAMPs). In plants, DAMPs or alarmins are released by damaged, stressed, or dying cells following abiotic stress such as radiation, oxidative and drought stresses. In turn, a cascade of downstream signaling events is initiated leading to the upregulation of defense or response-related genes. In the present study, we have investigated more thoroughly the conservation status of the molecular mechanisms implicated in the danger signaling primarily in plants. Towards this direction, we have performed in silico phylogenetic and structural analyses of the associated biomolecules in taxonomically diverse plant species. On the basis of our results, the defense mechanisms appear to be largely conserved within the plant kingdom. Of note, the sequence and/or function of several components of these mechanisms was found to be conserved in animals, as well. At the same time, the molecules involved in plant defense were found to form a dense protein-protein interaction (PPi) network, suggesting a crosstalk between the various defense mechanisms to a variety of stresses, like oxidative stress.

3.
J Hum Genet ; 64(8): 803-813, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165786

RESUMO

Rapid progress has recently been made in the elucidation of the genetic basis of childhood-onset inherited generalized dystonia (IGD) due to the implementation of genomic sequencing methodologies. We identified four patients with childhood-onset IGD harboring novel disease-causing mutations in lysine-specific histone methyltransferase 2B gene (KMT2B) by whole-exome sequencing. The main focus of this paper is to gain novel pathophysiological insights through understanding the molecular consequences of these mutations. The disease course is mostly progressive, evolving from lower limbs into generalized dystonia, which could be associated with dysarthria, dysphonia, intellectual disability, orofacial dyskinesia, and sometimes distinct dysmorphic facial features. In two patients, motor performances improved after bilateral implantation of deep brain stimulation in the globus pallidus internus (GPi-DBS). Pharmacotherapy with trihexyphenidyl reduced dystonia in two patients. We discovered three novel KMT2B mutations. Our analyses revealed that the mutation in patient 1 (c.7463A > G, p.Y2488C) is localized in the highly conserved FYRC domain of KMT2B. This mutation holds the potential to alter the inter-domain FYR interactions, which could lead to KMT2B instability. The mutations in patients 2 and 3 (c.3596_3697insC, p.M1202Dfs*22; c.4229delA, p.Q1410Rfs*12) lead to predicted unstable transcripts, likely to be subject to degradation by non-sense-mediated decay. Childhood-onset progressive dystonia with orofacial involvement is one of the main clinical manifestations of KMT2B mutations. In all, 26% (18/69) of the reported cases have T2 signal alterations of the globus pallidus internus, mostly at a younger age. Anticholinergic medication and GPi-DBS are promising treatment options and shall be considered early.

5.
Adv Protein Chem Struct Biol ; 112: 309-357, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29680240

RESUMO

During the past 35 years, recombinant DNA technology has allowed the production of a wide range of hematopoietic and neurotrophic growth factors including erythropoietin (EPO). These have emerged as promising protein drugs in various human diseases. Accumulated evidences have recently demonstrated the neuroprotective effect of EPO in preclinical models of acute and chronic degenerative disorders. Nevertheless, tissue protective effect of EPO could not be translated to the clinical trials because of common lethal thromboembolic events, erythropoiesis and hypertension. Although chemically modified nonerythropoietic analogs of EPO bypass these side effects, high expense, development of antidrug antibodies, and promotion of tumorigenicity are still concern especially in long-term use. As an alternative, nonerythropoietic EPO mimetic peptides can be used as candidate drugs with their high potency and selectivity, easy production, low cost, and immunogenicity properties. Recent experimental studies suggest that these peptides prevent ischemic brain injury and neuroinflammation. The results of clinical trial in patients with neuropathic pain are also promising. Herein, we summarize these studies and review advanced experimental and in silico methods in peptide drug discovery.

6.
Cell ; 173(1): 208-220.e20, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29551265

RESUMO

Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes.

7.
Nat Methods ; 14(9): 897-902, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28805795

RESUMO

We present a broadly applicable, user-friendly protocol that incorporates sparse and hybrid experimental data to calculate quasi-atomic-resolution structures of molecular machines. The protocol uses the HADDOCK framework, accounts for extensive structural rearrangements both at the domain and atomic levels and accepts input from all structural and biochemical experiments whose data can be translated into interatomic distances and/or molecular shapes.


Assuntos
Algoritmos , Modelos Químicos , Simulação de Acoplamento Molecular/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/ultraestrutura , Sítios de Ligação , Gráficos por Computador , Ligação Proteica , Conformação Proteica , Software , Integração de Sistemas , Interface Usuário-Computador
8.
Elife ; 52016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28009253

RESUMO

Bacterial Xer site-specific recombinases play an essential genome maintenance role by unlinking chromosome multimers, but their mechanism of action has remained structurally uncharacterized. Here, we present two high-resolution structures of Helicobacter pylori XerH with its recombination site DNA difH, representing pre-cleavage and post-cleavage synaptic intermediates in the recombination pathway. The structures reveal that activation of DNA strand cleavage and rejoining involves large conformational changes and DNA bending, suggesting how interaction with the cell division protein FtsK may license recombination at the septum. Together with biochemical and in vivo analysis, our structures also reveal how a small sequence asymmetry in difH defines protein conformation in the synaptic complex and orchestrates the order of DNA strand exchanges. Our results provide insights into the catalytic mechanism of Xer recombination and a model for regulation of recombination activity during cell division.


Assuntos
DNA/química , DNA/metabolismo , Helicobacter pylori/enzimologia , Conformação de Ácido Nucleico , Recombinases/química , Recombinases/metabolismo , Hidrólise , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Recombinação Genética , Difração de Raios X
9.
Proteins ; 84 Suppl 1: 323-48, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27122118

RESUMO

We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact-sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology-built subunit models and the smaller pair-wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. Proteins 2016; 84(Suppl 1):323-348. © 2016 Wiley Periodicals, Inc.


Assuntos
Biologia Computacional/estatística & dados numéricos , Modelos Estatísticos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas/química , Software , Algoritmos , Motivos de Aminoácidos , Bactérias/química , Sítios de Ligação , Biologia Computacional/métodos , Humanos , Cooperação Internacional , Internet , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Termodinâmica
10.
Methods Mol Biol ; 1215: 399-424, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25330973

RESUMO

Protein-protein docking aims at predicting the three-dimensional structure of a protein complex starting from the free forms of the individual partners. As assessed in the CAPRI community-wide experiment, the most successful docking algorithms combine pure laws of physics with information derived from various experimental or bioinformatics sources. Of these so-called "information-driven" approaches, HADDOCK stands out as one of the most successful representatives. In this chapter, we briefly summarize which experimental information can be used to drive the docking prediction in HADDOCK, and then focus on the docking protocol itself. We discuss and illustrate with a tutorial example a "classical" protein-protein docking prediction, as well as more recent developments for modelling multi-body systems and large conformational changes.


Assuntos
Biologia Computacional , Modelos Moleculares , Mapeamento de Interação de Proteínas/métodos , Cristalografia por Raios X , Bases de Dados de Proteínas , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Software , Termodinâmica
11.
Proteins ; 82(4): 620-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24155158

RESUMO

We report the first assessment of blind predictions of water positions at protein-protein interfaces, performed as part of the critical assessment of predicted interactions (CAPRI) community-wide experiment. Groups submitting docking predictions for the complex of the DNase domain of colicin E2 and Im2 immunity protein (CAPRI Target 47), were invited to predict the positions of interfacial water molecules using the method of their choice. The predictions-20 groups submitted a total of 195 models-were assessed by measuring the recall fraction of water-mediated protein contacts. Of the 176 high- or medium-quality docking models-a very good docking performance per se-only 44% had a recall fraction above 0.3, and a mere 6% above 0.5. The actual water positions were in general predicted to an accuracy level no better than 1.5 Å, and even in good models about half of the contacts represented false positives. This notwithstanding, three hotspot interface water positions were quite well predicted, and so was one of the water positions that is believed to stabilize the loop that confers specificity in these complexes. Overall the best interface water predictions was achieved by groups that also produced high-quality docking models, indicating that accurate modelling of the protein portion is a determinant factor. The use of established molecular mechanics force fields, coupled to sampling and optimization procedures also seemed to confer an advantage. Insights gained from this analysis should help improve the prediction of protein-water interactions and their role in stabilizing protein complexes.


Assuntos
Colicinas/química , Mapeamento de Interação de Proteínas , Água/química , Algoritmos , Biologia Computacional , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica
12.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 683-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633577

RESUMO

Scoring, the process of selecting the biologically relevant solution from a pool of generated conformations, is one of the major challenges in the field of biomolecular docking. A prominent way to cope with this challenge is to incorporate information-based terms into the scoring function. Within this context, low-resolution shape data obtained from either ion-mobility mass spectrometry (IM-MS) or SAXS experiments have been integrated into the conventional scoring function of the information-driven docking program HADDOCK. Here, the strengths and weaknesses of IM-MS-based and SAXS-based scoring, either in isolation or in combination with the HADDOCK score, are systematically assessed. The results of an analysis of a large docking decoy set composed of dimers generated by running HADDOCK in ab initio mode reveal that the content of the IM-MS data is of too low resolution for selecting correct models, while scoring with SAXS data leads to a significant improvement in performance. However, the effectiveness of SAXS scoring depends on the shape and the arrangement of the complex, with prolate and oblate systems showing the best performance. It is observed that the highest accuracy is achieved when SAXS scoring is combined with the energy-based HADDOCK score.


Assuntos
Biologia Computacional/métodos , Espectrometria de Massas/métodos , Simulação de Acoplamento Molecular/métodos , Conformação Proteica , Espalhamento a Baixo Ângulo , Software , Multimerização Proteica , Difração de Raios X
13.
Methods ; 59(3): 372-81, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23267861

RESUMO

High-resolution structural information is needed in order to unveil the underlying mechanistic of biomolecular function. Due to the technical limitations or the nature of the underlying complexes, acquiring atomic resolution information is difficult for many challenging systems, while, often, low-resolution biochemical or biophysical data can still be obtained. To make best use of all the available information and shed light on these challenging systems, integrative computational tools are required that can judiciously combine and accurately translate sparse experimental data into structural information. In this review we discuss the current state of integrative approaches, the challenges they are confronting and the advances made regarding those challenges. Recent developments are underpinned by noteworthy application examples taken from the literature. Within this context, we also position our data-driven docking approach, HADDOCK that can integrate a variety of information sources to drive the modeling of biomolecular complexes. Only a synergistic combination of experiment and modeling will allow us to tackle the challenges of adding the structural dimension to interactomes, shed "atomic" light onto molecular processes and understand the underlying mechanistic of biomolecular function. The current state of integrative approaches indicates that they are poised to take those challenges.


Assuntos
Modelos Moleculares , Conformação Molecular , Biologia Computacional/tendências , Estrutura Terciária de Proteína
14.
Proteins ; 80(7): 1810-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22489062

RESUMO

Inaccuracies in computational molecular modeling methods are often counterweighed by brute-force generation of a plethora of putative solutions. These are then typically sieved via structural clustering based on similarity measures such as the root mean square deviation (RMSD) of atomic positions. Albeit widely used, these measures suffer from several theoretical and technical limitations (e.g., choice of regions for fitting) that impair their application in multicomponent systems (N > 2), large-scale studies (e.g., interactomes), and other time-critical scenarios. We present here a simple similarity measure for structural clustering based on atomic contacts--the fraction of common contacts--and compare it with the most used similarity measure of the protein docking community--interface backbone RMSD. We show that this method produces very compact clusters in remarkably short time when applied to a collection of binary and multicomponent protein-protein and protein-DNA complexes. Furthermore, it allows easy clustering of similar conformations of multicomponent symmetrical assemblies in which chain permutations can occur. Simple contact-based metrics should be applicable to other structural biology clustering problems, in particular for time-critical or large-scale endeavors.


Assuntos
Análise por Conglomerados , DNA/química , Modelos Químicos , Complexos Multiproteicos/química , Algoritmos , DNA/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas/química , Proteínas/metabolismo
15.
Structure ; 19(4): 555-65, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21481778

RESUMO

Binding-induced backbone and large-scale conformational changes represent one of the major challenges in the modeling of biomolecular complexes by docking. To address this challenge, we have developed a flexible multidomain docking protocol that follows a "divide-and-conquer" approach to model both large-scale domain motions and small- to medium-scale interfacial rearrangements: the flexible binding partner is treated as an assembly of subparts/domains that are docked simultaneously making use of HADDOCK's multidomain docking ability. For this, the flexible molecules are cut at hinge regions predicted using an elastic network model. The performance of this approach is demonstrated on a benchmark covering an unprecedented range of conformational changes of 1.5 to 19.5 Å. We show from a statistical survey of known complexes that the cumulative sum of eigenvalues obtained from the elastic network has some predictive power to indicate the extent of the conformational change to be expected.


Assuntos
Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas/química , Algoritmos , Simulação por Computador , Ligação Proteica , Conformação Proteica , Software
16.
J Mol Biol ; 406(4): 620-30, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21216249

RESUMO

Sumoylation is the covalent attachment of small ubiquitin-like modifier (SUMO) to a target protein. Similar to other ubiquitin-like pathways, three enzyme types are involved that act in succession: an activating enzyme (E1), a conjugating enzyme (E2), and a ligase (E3). To date, unlike other ubiquitin-like mechanisms, sumoylation of the target RanGAP1 (Target(RanGAP1)) does not absolutely require the E3 of the system, RanBP2 (E3(RanBP2)), since the presence of E2 (E2(Ubc9)) is enough to sumoylate Target(RanGAP1). However, in the presence of E3, sumoylation is more efficient. To understand the role of the target specificity of E3(RanBP2) and E2(Ubc9), we carried out molecular dynamics simulations for the structure of E2(Ubc9)-SUMO-Target(RanGAP1) with and without the E3(RanBP2) ligase. Analysis of the dynamics of E2(Ubc9)-SUMO-Target(RanGAP1) in the absence and presence of E3(RanBP2) revealed that two different allosteric sites regulate the ligase activity: (i) in the presence of E3(RanBP2), the E2(Ubc9)'s loop 2; (ii) in the absence of E3(RanBP2), the Leu65-Arg70 region of SUMO. These results provide a first insight into the question of how E3(RanBP2) can act as an intrinsic E3 for E2(Ubc9) and why, in its absence, the activity of E2(Ubc9)-SUMO-Target(RanGAP1) could still be maintained, albeit at lower efficiency.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Regulação Alostérica , Proteínas Ativadoras de GTPase/química , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Especificidade por Substrato , Sumoilação , Enzimas de Conjugação de Ubiquitina/química
17.
PLoS Comput Biol ; 6(8)2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20865051

RESUMO

Sumoylation, the covalent attachment of SUMO (Small Ubiquitin-Like Modifier) to proteins, differs from other Ubl (Ubiquitin-like) pathways. In sumoylation, E2 ligase Ubc9 can function without E3 enzymes, albeit with lower reaction efficiency. Here, we study the mechanism through which E3 ligase RanBP2 triggers target recognition and catalysis by E2 Ubc9. Two mechanisms were proposed for sumoylation. While in both the first step involves Ubc9 conjugation to SUMO, the subsequent sequence of events differs: in the first E2-SUMO forms a complex with the target and E3, followed by SUMO transfer to the target. In the second, Ubc9-SUMO binds to the target and facilitates SUMO transfer without E3. Using dynamic correlations obtained from explicit solvent molecular dynamic simulations we illustrate the key roles played by allostery in both mechanisms. Pre-existence of conformational states explains the experimental observations that sumoylation can occur without E3, even though at a reduced rate. Furthermore, we propose a mechanism for enhancement of sumoylation by E3. Analysis of the conformational ensembles of the complex of E2 conjugated to SUMO illustrates that the E2 enzyme is already largely pre-organized for target binding and catalysis; E3 binding shifts the equilibrium and enhances these pre-existing populations. We further observe that E3 binding regulates allosterically the key residues in E2, Ubc9 Asp100/Lys101 E2, for the target recognition.


Assuntos
Sumoilação , Ubiquitina-Proteína Ligases/fisiologia , Regulação Alostérica , Sítios de Ligação , Humanos , Chaperonas Moleculares/química , Conformação Molecular , Simulação de Dinâmica Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/fisiologia
18.
PLoS One ; 5(8): e12430, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20865150

RESUMO

Ataxin-3, the disease protein in the neurodegenerative disorder Spinocerebellar Ataxia Type 3 or Machado Joseph disease, is a cysteine protease implicated in the ubiquitin proteasome pathway. It contains multiple ubiquitin binding sites through which it anchors polyubiquitin chains of different linkages that are then cleaved by the N-terminal catalytic (Josephin) domain. The properties of the ubiquitin interacting motifs (UIMs) in the C-terminus of ataxin-3 are well established. Very little is known, however, about how two recently identified ubiquitin-binding sites in the Josephin domain contribute to ubiquitin chain binding and cleavage. In the current study, we sought to define the specific contribution of the Josephin domain to the catalytic properties of ataxin-3 and assess how the topology and affinity of these binding sites modulate ataxin-3 activity. Using NMR we modeled the structure of diUb/Josephin complexes and showed that linkage preferences are imposed by the topology of the two binding sites. Enzymatic studies further helped us to determine a precise hierarchy between the sites. We establish that the structure of Josephin dictates specificity for K48-linked chains. Site 1, which is close to the active site, is indispensable for cleavage. Our studies open the way to understand better the cellular function of ataxin-3 and its link to pathology.


Assuntos
Doença de Machado-Joseph/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Poliubiquitina/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Ataxina-3 , Sítios de Ligação , Humanos , Conformação Molecular , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Poliubiquitina/química , Poliubiquitina/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Repressoras/genética
19.
Proteins ; 78(15): 3242-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20718048

RESUMO

The recent CAPRI rounds have introduced new docking challenges in the form of protein-RNA complexes, multiple alternative interfaces, and an unprecedented number of targets for which homology modeling was required. We present here the performance of HADDOCK and its web server in the CAPRI experiment and discuss the strengths and weaknesses of data-driven docking. HADDOCK was successful for 6 out of 9 complexes (6 out of 11 targets) and accurately predicted the individual interfaces for two more complexes. The HADDOCK server, which is the first allowing the simultaneous docking of generic multi-body complexes, was successful in 4 out of 7 complexes for which it participated. In the scoring experiment, we predicted the highest number of targets of any group. The main weakness of data-driven docking revealed from these last CAPRI results is its vulnerability for incorrect experimental data related to the interface or the stoichiometry of the complex. At the same time, the use of experimental and/or predicted information is also the strength of our approach as evidenced for those targets for which accurate experimental information was available (e.g., the 10 three-stars predictions for T40!). Even when the models show a wrong orientation, the individual interfaces are generally well predicted with an average coverage of 60% ± 26% over all targets. This makes data-driven docking particularly valuable in a biological context to guide experimental studies like, for example, targeted mutagenesis.


Assuntos
Biologia Computacional/métodos , Modelos Químicos , Proteínas de Ligação a RNA/química , RNA/química , Bases de Dados de Proteínas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Modelos Estatísticos , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Software
20.
Mol Cell Proteomics ; 9(8): 1784-94, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20305088

RESUMO

Over the last years, large scale proteomics studies have generated a wealth of information of biomolecular complexes. Adding the structural dimension to the resulting interactomes represents a major challenge that classical structural experimental methods alone will have difficulties to confront. To meet this challenge, complementary modeling techniques such as docking are thus needed. Among the current docking methods, HADDOCK (High Ambiguity-Driven DOCKing) distinguishes itself from others by the use of experimental and/or bioinformatics data to drive the modeling process and has shown a strong performance in the critical assessment of prediction of interactions (CAPRI), a blind experiment for the prediction of interactions. Although most docking programs are limited to binary complexes, HADDOCK can deal with multiple molecules (up to six), a capability that will be required to build large macromolecular assemblies. We present here a novel web interface of HADDOCK that allows the user to dock up to six biomolecules simultaneously. This interface allows the inclusion of a large variety of both experimental and/or bioinformatics data and supports several types of cyclic and dihedral symmetries in the docking of multibody assemblies. The server was tested on a benchmark of six cases, containing five symmetric homo-oligomeric protein complexes and one symmetric protein-DNA complex. Our results reveal that, in the presence of either bioinformatics and/or experimental data, HADDOCK shows an excellent performance: in all cases, HADDOCK was able to generate good to high quality solutions and ranked them at the top, demonstrating its ability to model symmetric multicomponent assemblies. Docking methods can thus play an important role in adding the structural dimension to interactomes. However, although the current docking methodologies were successful for a vast range of cases, considering the variety and complexity of macromolecular assemblies, inclusion of some kind of experimental information (e.g. from mass spectrometry, nuclear magnetic resonance, cryoelectron microscopy, etc.) will remain highly desirable to obtain reliable results.


Assuntos
Biologia Computacional/métodos , Internet , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Interface Usuário-Computador , Aminoácidos/química , Cristalografia por Raios X , Substâncias Macromoleculares/química , Complexos Multiproteicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA