Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 9(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916180

RESUMO

The COVID-19 pandemic has generated intense interest in the rapid development and evaluation of vaccine candidates for this disease and other emerging diseases. Several novel methods for preparing vaccine candidates are currently undergoing clinical evaluation in response to the urgent need to prevent the spread of COVID-19. In many cases, these methods rely on new approaches for vaccine production and immune stimulation. We report on the use of a novel method (SolaVAX) for production of an inactivated vaccine candidate and the testing of that candidate in a hamster animal model for its ability to prevent infection upon challenge with SARS-CoV-2 virus. The studies employed in this work included an evaluation of the levels of neutralizing antibody produced post-vaccination, levels of specific antibody sub-types to RBD and spike protein that were generated, evaluation of viral shedding post-challenge, flow cytometric and single cell sequencing data on cellular fractions and histopathological evaluation of tissues post-challenge. The results from this preliminary evaluation provide insight into the immunological responses occurring as a result of vaccination with the proposed vaccine candidate and the impact that adjuvant formulations, specifically developed to promote Th1 type immune responses, have on vaccine efficacy and protection against infection following challenge with live SARS-CoV-2. This data may have utility in the development of effective vaccine candidates broadly. Furthermore, the results of this preliminary evaluation suggest that preparation of a whole virion vaccine for COVID-19 using this specific photochemical method may have potential utility in the preparation of one such vaccine candidate.

2.
Vaccine ; 38(45): 7156-7165, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32978002

RESUMO

Although vaccination with BCG prevents disseminated forms of childhood tuberculosis (TB), it does not protect against pulmonary infection or Mycobacterium tuberculosis (Mtb) transmission. In this study, we generated a complete deletion mutant of the Mtb Esx-5 type VII secretion system (Mtb Δesx-5). Mtb Δesx-5 was highly attenuated and safe in immunocompromised mice. When tested as a vaccine candidate to boost BCG-primed immunity, Mtb Δesx-5 improved protection against highly virulent Mtb strains in the murine and guinea pig models of TB. Enhanced protection provided by heterologous BCG-prime plus Mtb Δesx-5 boost regimen was associated with increased pulmonary influx of central memory T cells (TCM), follicular helper T cells (TFH) and activated monocytes. Conversely, lower numbers of T cells expressing exhaustion markers were observed in vaccinated animals. Our results suggest that boosting BCG-primed immunity with Mtb Δesx-5 is a potential approach to improve protective immunity against Mtb. Further insight into the mechanism of action of this novel prime-boost approach is warranted.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Sistemas de Secreção Tipo VII , Animais , Antígenos de Bactérias , Vacina BCG , Cobaias , Imunização Secundária , Camundongos , Mycobacterium tuberculosis/genética , Tuberculose/prevenção & controle , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...