Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410291, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990168

RESUMO

Establishing unprecedented types of bonding interactions is one of the fundamental challenges in synthetic chemistry, paving the way to new (electronic) structures, physicochemical properties, and reactivity. In this context, unsupported element-element interactions are particularly noteworthy since they offer pristine scientific information about the newly identified structural motif. Here we report the synthesis, isolation, and full characterization of the heterobimetallic Bi / Pt compound [Pt(PCy3)2(BiMe2)(SbF6)] (1), bearing the first unsupported transition metal→bismuth donor/acceptor interaction as its key structural motif. 1 is surprisingly robust, its electronic spectra are interpreted in a fully relativistic approach, and it reveals an unprecedented reactivity towards H2.

2.
Chem Mater ; 36(13): 6489-6503, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39005530

RESUMO

Advanced deposition routes are vital for the growth of functional metal-organic thin films. The gas-phase atomic/molecular layer deposition (ALD/MLD) technique provides solvent-free and uniform nanoscale thin films with unprecedented thickness control and allows straightforward device integration. Most excitingly, the ALD/MLD technique can enable the in situ growth of novel crystalline metal-organic materials. An exquisite example is iron-terephthalate (Fe-BDC), which is one of the most appealing metal-organic framework (MOF) type materials and thus widely studied in bulk form owing to its attractive potential in photocatalysis, biomedicine, and beyond. Resolving the chemistry and structural features of new thin film materials requires an extended selection of characterization and modeling techniques. Here we demonstrate how the unique features of the ALD/MLD grown in situ crystalline Fe-BDC thin films, different from the bulk Fe-BDC MOFs, can be resolved through techniques such as synchrotron grazing-incidence X-ray diffraction (GIXRD), Mössbauer spectroscopy, and resonant inelastic X-ray scattering (RIXS) and crystal structure predictions. The investigations of the Fe-BDC thin films, containing both trivalent and divalent iron, converge toward a novel crystalline Fe(III)-BDC monoclinic phase with space group C2/c and an amorphous Fe(II)-BDC phase. Finally, we demonstrate the excellent thermal stability of our Fe-BDC thin films.

3.
Inorg Chem ; 63(16): 7105-7112, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38591794

RESUMO

It is well established that solid K2MnF6 reacts with excess SbF5 forming elemental F2. However, if the reaction is carried out in anhydrous HF (aHF) as a solvent, this is surprisingly not the case. Instead, the green Mn(IV) compound K3[(MnIVF)(SbF6)5]F is obtained. The reductive elimination of F2 was not observed under the applied conditions. The compound was characterized by its crystal structure, by Raman spectroscopy, and by quantum-chemical solid-state calculations. It crystallizes in the monoclinic space group P21/c, mP164, with the lattice parameters a = 12.2393(13), b = 12.167(2), c = 20.115(5) Å, ß = 110.805(8)°, V = 2800.1(9) Å3, Z = 4 at T = 200 K. As the use of strictly anhydrous HF is crucial in this and other similar reactions, methods for drying moist HF are discussed.

4.
Dalton Trans ; 53(14): 6282-6288, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38482938

RESUMO

We have used high-pressure synthesis to synthesize samples of Ca2-xMnxTi2O6 double perovskite, where x varies between 0.2 and 1. The synthesized materials were structurally characterized with powder X-ray diffraction (XRD). Rietveld refinement of the XRD patterns was used to study the change from CaTiO3 (x = 0) to the composition CaMnTi2O6 (x = 1) where half of the Ca(II) ions are replaced by smaller Mn(II) ions. We analyzed the peak shapes in the XRD patterns, as well as lattice parameters, and it appears that smooth symmetry change from the centrosymmetric space group Pbnm to the non-centrosymmetric space group P42mc occurs between x = 0.3 and x = 0.5. We also confirmed the centrosymmetric to non-centrosymmetric transition by characterizing the dielectric properties of the materials with ferroelectric measurements.

5.
Chem Sci ; 15(9): 3273-3278, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425514

RESUMO

The reaction of [NMe4][BrF6] with an excess of BrF5 leads to the compound [NMe4][Br4F21]·BrF5. It features molecular [(µ4-F)(BrF5)4]- anions of tetrahedron-like shape containing central µ4-bridging F atoms coordinated by four BrF5 molecules. It is the most BrF5-rich fluoridobromate anion by mass. Quantum-chemical calculations showed that the µ4-F-Br bonds within the anion are essentially ionic in nature. The compound is the first example where F atoms bridge µ4-like neither to metal nor to hydrogen atoms. It was characterized by Raman spectroscopy and by single-crystal X-ray diffraction. The latter showed surprisingly that its crystal structure is related to the intermetallic half-Heusler compound and structure type MgAgAs.

6.
Small Methods ; : e2301229, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528393

RESUMO

The charge-transfer (CT) interactions between organic compounds are reflected in the (opto)electronic properties. Determining and visualizing crystal structures of CT complexes are essential for the design of functional materials with desirable properties. Complexes of pyranine (PYR), methyl viologen (MV), and their derivatives are the most studied water-based CT complexes. Nevertheless, very few crystal structures of CT complexes have been reported so far. In this study, the structures of two PYRs-MVs CT crystals and a map of the noncovalent interactions using 3D electron diffraction (3DED) are reported. Physical properties, e.g., band structure, conductivity, and electronic spectra of the CT complexes and their crystals are investigated and compared with a range of methods, including solid and liquid state spectroscopies and highly accurate quantum chemical calculations based on density functional theory (DFT). The combination of 3DED, spectroscopy, and DFT calculation can provide important insight into the structure-property relationship of crystalline CT materials, especially for submicrometer-sized crystals.

7.
Phys Chem Chem Phys ; 26(3): 2355-2362, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165966

RESUMO

Thin layers of commonly used adhesion metals i.e., Cr and Ti were annealed to investigate and estimate their impact on the electrochemical properties of the carbon nanomaterials grown on top of them. The microstructure, surface chemistry, and electrochemical activities of these materials were evaluated and compared with those of as-deposited thin films. The results from X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, grazing incidence X-ray diffraction (GIXRD), time-of-flight elastic recoil detection analysis (TOF-ERDA), and conductive atomic force microscopy (C-AFM) indicated the formation of a catalytic graphite layer on Cr following annealing, while no such layer was formed on Ti. This is attributed to the formation of the Cr2O3 layer on annealed Cr, which acts as a barrier to carbon diffusion into the underlying Cr. Conversely, Ti exhibits a high solubility for both carbon and oxygen, preventing the formation of the graphite layer. Cyclic voltammetry results showed that annealed Cr electrodes are electrochemically active towards both dopamine (DA) and ascorbic acid (AA) while no electrochemical activity is exhibited by annealed Ti. Quantum chemical calculations suggested that the presence of carbon as graphene or an amorphous form is critical for the oxidation reaction of probes. These results are significant for comprehending how the distinct solubilities of typical interstitial solutes influence the microstructure of adhesion metal layers and consequently yield diverse electrochemical properties.

8.
Angew Chem Int Ed Engl ; 63(4): e202316469, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38051820

RESUMO

Skutterudites are of high interest in current research due to their diversity of structures comprising empty, partially filled and filled variants, mostly based on metallic compounds. We herein present Ba12 [BN2 ]6.67 H4 , forming a non-metallic filled anti-skutterudite. It is accessed in a solid-state ampoule reaction from barium subnitride, boron nitride and barium hydride at 750 °C. Single-crystal X-ray and neutron powder diffraction data allowed to elucidate the structure in the cubic space group Im 3 ‾ ${\bar{3}}$ (no. 204). The barium and hydride atoms form a three-dimensional network consisting of corner-sharing HBa6 octahedra and Ba12 icosahedra. Slightly bent [BN2 ]3- units are located in the icosahedra and the voids in-between. 1 H and 11 B magic angle spinning (MAS) NMR experiments and vibrational spectroscopy further support the structure model. Quantum chemical calculations coincide well with experimental results and provide information about the electronic structure of Ba12 [BN2 ]6.67 H4 .

9.
Chemistry ; 30(18): e202304097, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38161190

RESUMO

Recently, several ternary phosphidotrielates and -tetrelates have been investigated with respect to their very good ionic conductivity, while less focus was pointed towards their electronic structures. Here, we report on a novel series of compounds, in which several members possess direct band gaps. We investigated the known compounds Li3AlP2, Li3GaP2, Li3InP2, and Na3InP2 and describe the synthesis and the crystal structure of novel Na3In2P3. For all mentioned phosphidotrielates reflectance UV-Vis measurements reveal direct band gaps in the visible light region with decreasing band gaps in the series: Li3AlP2 (2.45 eV), Li3GaP2 (2.18 eV), Li3InP2 (1.99 eV), Na3InP2 (1.37 eV), and Na3In2P3 (1.27 eV). All direct band gaps are confirmed by quantum chemical calculations. The unexpected property occurs despite different structure types. As a common feature all compounds contain EP4 tetrahedra, which share exclusively vertices for E=In and vertices as well as edges for E=Al and Ga. The structure of the novel Na3In2P3 is built up by a polyanionic framework of six-membered rings of corner-sharing InP4 tetrahedra. As a result, the newly designed semiconductors with direct band gaps are suitable for optoelectronic applications, and they can provide significant guidance for the design of new functional semiconductors.

10.
Molecules ; 28(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630237

RESUMO

Binary zinc(II) oxide (ZnO) and copper(II) oxide (CuO) are used in a number of applications, including optoelectronic and semiconductor applications. However, no crystal structures have been reported for ternary Cu-Zn-O oxides. In that context, we investigated the structural characteristics and thermodynamics of CuxZnyOz ternary oxides to map their experimental feasibility. We combined evolutionary crystal structure prediction and quantum chemical methods to investigate potential CuxZnyOz ternary oxides. The USPEX algorithm and density functional theory were used to screen over 4000 crystal structures with different stoichiometries. When comparing compositions with non-magnetic CuI ions, magnetic CuII ions, and mixed CuI-CuII compositions, the magnetic Cu2Zn2O4 system is thermodynamically the most favorable. At ambient pressures, the thermodynamically most favorable ternary crystal structure is still 2.8 kJ/mol per atom higher in Gibbs free energy compared to experimentally known binary phases. The results suggest that thermodynamics of the hypothetical CuxZnyOz ternary oxides should also be evaluated at high pressures. The predicted ternary materials are indirect band gap semiconductors.

11.
Dalton Trans ; 52(35): 12461-12469, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37602407

RESUMO

We have used a recently introduced new tolerance factor τ to create a stability map of all possible A-site double perovskite titanates AA'Ti2O6 and niobates AA'Nb2O6. The predictive power of τ is relatively good based on comparisons with available experimental data for A-site double perovskites. We carried out quantum chemical calculations on two hypothetical double perovskite compositions CsScTi2O6 and YRbTi2O6, where τ predicts high probability for their existence. In both cases, we found limits in the predictive power of the new tolerance factor for ion combinations on the A and A' site which are very different in size. A difference in oxidation state may decrease the accuracy, as well. Overall, the A-site double perovskite stability mapping provides a starting point for the discovery of novel A-site double perovskites.

12.
Inorg Chem ; 62(33): 13435-13452, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37555652

RESUMO

The herein-reported oxyfluoridometallate salts were synthesized and structurally characterized during the studies of the Lewis acidity of MOF4 (M = Mo, W) with various fluoride ion donors (RbF, CsF, TlF, AgF, SrF2, BaF2, PbF2) in different solvents (aqHF 48%, aHF, BrF3, ClF3). Phase-pure MoOF4 was either synthesized by hydrolysis of MoF6 with SiO2 in anhydrous HF (aHF) or by reactions of BrF3 with MoO2 or MoO3, respectively. The compound was characterized by infrared and Raman spectroscopy, solid-state quantum-chemical calculations, as well as powder and single-crystal X-ray diffraction. MoOF4 reacted with PbF2 in aHF forming Pb[MoOF5]2, while under comparable conditions, WOF4 formed Pb3[WOF5]4F2, containing the [WOF5]- anion. Salts containing such [MoOF5]- anions were also directly obtained from reactions of BrF3, MoO3, and AF2 (A = Sr, Ba), while with AgF, the compound Ag[Mo2O2F9] was observed. ClF3 reacted with MoO3 to form [ClOF2][Mo3O3F13]. Carrying out similar reactions in aqueous HF (aqHF) in autoclaves under hydrofluorothermal conditions leads to O-richer compounds with the composition A[MoO2F4] (A = Sr, Ba). With RbF or Tl2(CO3), the compounds A[MoO2F3] (A = Rb, Tl) were obtained. With CsF reduction to Mo(V) occurred as Cs2[MoVOF5] was formed. We report on similarities and differences within the respective anions and within the crystal structures of these compounds.

13.
Chemistry ; 29(49): e202301876, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37522612

RESUMO

The reaction of Cs[BrF6 ] with BrF5 gave the compound Cs[Br3 F16 ] with the unprecedented propeller-shaped, C3 -symmetric [(µ3 -F)(BrF5 )3 ]- anion. All other currently known fluoridobromates(V) contain only octahedral [BrF6 ]- anions, which, unlike the related [IF6 ]- anions, never exhibited stereochemical activity of the lone pair on the Br atoms. Despite the same coordination number of six for the Br atom in the [BrF6 ]- and [(µ3 -F)(BrF5 )3 ]- anions, the longer µ3 -F-Br bonds provide additional space, allowing the lone pairs on the Br atoms to become stereochemically active. Cs[Br3 F16 ] was characterized by single-crystal X-ray diffraction, Raman spectroscopy, and quantum-chemical calculations for both the solid-state compound and the isolated anion at 0 K. Intrinsic bond orbital calculations show that the µ3 -F-Br bond is essentially ionic in nature and also underpin the stereochemical activity of the lone pairs of the Br(V) atoms.

14.
Angew Chem Int Ed Engl ; 62(36): e202305108, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37227225

RESUMO

Crystalline diphosphonium iodides [MeR2 P-spacer-R2 Me]I with phenylene (1, 2), naphthalene (3, 4), biphenyl (5) and anthracene (6) as aromatic spacers, are photoemissive under ambient conditions. The emission colors (λem values from 550 to 880 nm) and intensities (Φem reaching 0.75) are defined by the composition and substitution geometry of the central conjugated chromophore motif, and the anion-π interactions. Time-resolved and variable-temperature luminescence studies suggest phosphorescence for all the titled compounds, which demonstrate observed lifetimes of 0.46-92.23 µs at 297 K. Radiative rate constants kr as high as 2.8×105  s-1 deduced for salts 1-3 were assigned to strong spin-orbit coupling enhanced by an external heavy atom effect arising from the anion-π charge-transfer character of the triplet excited state. These rates of anomalously fast metal-free phosphorescence are comparable to those of transition metal complexes and organic luminophores that utilize triplet excitons via a thermally activated delayed fluorescence mechanism, making such ionic luminophores a new paradigm for the design of photofunctional and responsive molecular materials.

15.
Nanotechnology ; 34(31)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37116478

RESUMO

The half Heusler TiNiSn compound is a model system for understanding the relationship among structural, electronic, microstructural and thermoelectric properties. However, the role of defects that deviate from the ideal crystal structure is far from being fully described. In this work, TiNi1+xSn alloys (x= 0, 0.03, 0.06, 0.12) were synthesized by arc melting elemental metals and annealed to achieve equilibrium conditions. Experimental values of the Seebeck coefficient and electrical resistivity, obtained from this work and from the literature, scale with the measured carrier concentration, due to different amounts of secondary phases and interstitial nickel. Density functional theory calculations showed that the presence of both interstitial Ni defects and composition conserving defects narrows the band gap with respect to the defect free structure, affecting the transport properties. Accordingly, results of experimental investigations have been explained confirming that interstitial Ni defects, as well as secondary phases, promote a metallic behavior, raising the electrical conductivity and lowering the absolute values of the Seebeck coefficient.

16.
Angew Chem Int Ed Engl ; 62(29): e202304088, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37102264

RESUMO

C60 donor dyads in which the carbon cage is covalently linked to an electron-donating unit have been discussed as one possibility for an electron-transfer system, and it has been shown that spherical [Ge9 ] cluster anions show a close relation to fullerenes with respect to their electronic structure. However, the optical properties of these clusters and of functionalized cluster derivatives are almost unknown. We now report on the synthesis of the intensely red [Ge9 ] cluster linked to an extended π-electron system. [Ge9 {Si(TMS)3 }2 {CH3 C=N}-DAB(II)Dipp ]- (1- ) is formed upon the reaction of [Ge9 {Si(TMS)3 }2 ]2- with bromo-diazaborole DAB(II)Dipp -Br in CH3 CN (TMS=trimethylsilyl; DAB(II)=1,3,2-diazaborole with an unsaturated backbone; Dipp=2,6-di-iso-propylphenyl). Reversible protonation of the imine entity in 1- yields the deep green, zwitterionic cluster [Ge9 {Si(TMS)3 }2 {CH3 C=N(H)}-DAB(II)Dipp ] (1-H) and vice versa. Optical spectroscopy combined with time-dependent density functional theory suggests a charge-transfer excitation between the cluster and the antibonding π* orbital of the imine moiety as the cause of the intense coloration. An absorption maximum of 1-H in the red region of the electromagnetic spectrum and the corresponding lowest-energy excited state at λ=669 nm make the compound an interesting starting point for further investigations targeting the design of photo-active cluster compounds.

17.
Molecules ; 28(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770782

RESUMO

The use of biocomposites is increasing due to their recyclability, biodegradability, and decreased CO2 emission levels compared to pure polyolefin plastics. Furthermore, suitably engineered biocomposites can provide, for example, superior mechanical properties for various applications. However, the correlations between the atomic-level structure and mechanical properties of most biocomposites are not yet understood. Atomistic molecular dynamics (MD) simulations provide a powerful way to examine the atomic-level structure and mechanical properties of biocomposites. In this study, polypropylene-cellulose biocomposites were examined using maleic anhydride grafted polypropylene (PP-MAH) as a coupling agent. The biocomposites were studied with the Materials Studio program package and COMPASSII force field, using the constant strain approach for mechanical properties. The results were comparable to the experimental literature values, showing that that MD can be applied to study the atomic-level structure-property correlations of polypropylene-cellulose biocomposites.

18.
Chemphyschem ; 24(9): e202200903, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36688413

RESUMO

Quantum chemical methods were used to study the molecular structure and anharmonic IR spectra of the experimentally known closed-shell molecular hexafluorides MF6 (M=S, Se, Te, Xe, Mo, W, U). First, the molecular structures and harmonic frequencies were investigated using Density Functional Theory (DFT) with all-electron basis sets and explicitly considering the influence of spin-orbit coupling. Second, anharmonic frequencies and IR intensities were calculated with the CCSD(T) coupled cluster method and compared, where available, with IR spectra recorded by us. These comparisons showed satisfactory results. The anharmonic IR spectra provide means for identifying experimentally too little studied or unknown MF6 molecules with M=Cr, Po, Rn. To the best of our knowledge, we predict the NdF6 molecule for the first time and show it to be a true local minimum on the potential energy surface. We used intrinsic bond orbital (IBO) analyses to characterize the bonding situation in comparison with the UF6 molecule.

19.
Angew Chem Int Ed Engl ; 62(10): e202213962, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36588091

RESUMO

All-solid-state batteries are promising candidates for safe energy-storage systems due to non-flammable solid electrolytes and the possibility to use metallic lithium as an anode. Thus, there is a challenge to design new solid electrolytes and to understand the principles of ion conduction on an atomic scale. We report on a new concept for compounds with high lithium ion mobility based on a rigid open-framework boron structure. The host-guest structure Li6 B18 (Li3 N) comprises large hexagonal pores filled with ∞ 1 [ ${{}_{{\rm { \infty }}}{}^{{\rm { 1}}}{\rm { [}}}$ Li7 N] strands that represent a perfect cutout from the structure of α-Li3 N. Variable-temperature 7 Li NMR spectroscopy reveals a very high Li mobility in the template phase with a remarkably low activation energy below 19 kJ mol-1 and thus much lower than pristine Li3 N. The formation of the solid solution of Li6 B18 (Li3 N) and Li6 B18 (Li2 O) over the complete compositional range allows the tuning of lithium defects in the template structure that is not possible for pristine Li3 N and Li2 O.

20.
Inorg Chem ; 61(48): 19220-19231, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36414241

RESUMO

The phosphonium-decorated phenanthro-imidazolyl pyridine ligand, LP+Br, readily reacts with zinc(II) and cadmium(II) bromides to give inorganic-organic zero-dimensional compounds [LP+ZnBr2]2[ZnBr4] (1) and [(LP+)2Cd2Br4][CdBr4] (2), respectively, upon crystallization. These salts are moderately fluorescent in the solid state under ambient conditions (λem = 458 nm, Φem = 0.11 for 1; λem = 460 nm, Φem = 0.13 for 2). Their emission results from spin-allowed electronic transitions localized on the organic component with the negligible effect of [MBr4]2- and MBr2 units. Contrary to ionic species 1 and 2, lead(II) bromide affords a neutral and water-stable complex [(LP+)2Pb3Br8] (3), showing weak room-temperature phosphorescence arising from spin-orbit coupling due to the heavy atom effect. The emission, which is substantially enhanced for the amorphous sample of 3 (λem = 575 nm, Φem = 0.06), is assigned to the intraligand triplet excited state, which is a rare phenomenon among Pb(II) molecular materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...