Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(12): 123201, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31633947

RESUMO

Femtosecond laser pulses have opened new frontiers for the study of ultrafast phase transitions and nonequilibrium states of matter. In this Letter, we report on structural dynamics in atomic clusters pumped with intense near-infrared (NIR) pulses into a nanoplasma state. Employing wide-angle scattering with intense femtosecond x-ray pulses from a free-electron laser source, we find that highly excited xenon nanoparticles retain their crystalline bulk structure and density in the inner core long after the driving NIR pulse. The observed emergence of structural disorder in the nanoplasma is consistent with a propagation from the surface to the inner core of the clusters.

2.
Struct Dyn ; 6(5): 054302, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31531388

RESUMO

An experimental system, SPINETT (SACLA Pump-probe INstrumEnt for Tracking Transient dynamics), dedicated for ultrafast pump-probe experiments using X-ray free-electron lasers has been developed. SPINETT consists of a chamber operated under 1 atm helium pressure, two Von Hamos spectrometers, and a large two-dimensional detector having a short work distance. This platform covers complementary X-ray techniques; one can perform time-resolved X-ray absorption spectroscopy, time-resolved X-ray emission spectroscopy, and time-resolved X-ray diffuse scattering. Two types of liquid injectors have been prepared for low-viscosity chemical solutions and for protein microcrystals embedded in a matrix. We performed a test experiment at SPring-8 Angstrom Compact free-electron LAser and demonstrated the capability of SPINETT to obtain the local electronic structure and geometrical information simultaneously.

3.
Nat Commun ; 10(1): 3606, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399565

RESUMO

Disentangling the strong interplay between electronic and nuclear degrees of freedom is essential to achieve a full understanding of excited state processes during ultrafast nonadiabatic chemical reactions. However, the complexity of multi-dimensional potential energy surfaces means that this remains challenging. The energy flow during vibrational and electronic relaxation processes can be explored with structural sensitivity by probing a nuclear wavepacket using femtosecond time-resolved X-ray Absorption Near Edge Structure (TR-XANES). However, it remains unknown to what level of detail vibrational motions are observable in this X-ray technique. Herein we track the wavepacket dynamics of a prototypical [Cu(2,9-dimethyl-1,10-phenanthroline)2]+ complex using TR-XANES. We demonstrate that sensitivity to individual wavepacket components can be modulated by the probe energy and that the bond length change associated with molecular breathing mode can be tracked with a sub-Angstrom resolution beyond optical-domain observables. Importantly, our results reveal how state-of-the-art TR-XANES provides deeper insights of ultrafast nonadiabatic chemical reactions.

4.
J Synchrotron Radiat ; 26(Pt 3): 887-890, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074453

RESUMO

An arrival timing monitor for the soft X-ray free-electron laser (XFEL) beamline of SACLA BL1 has been developed. A small portion of the soft XFEL pulse is branched using the wavefront-splitting method. The branched FEL pulse is one-dimensionally focused onto a GaAs wafer to induce a transient reflectivity change. The beam branching method enables the simultaneous operation of the arrival timing diagnostics and experiments. The temporal resolution evaluated from the imaging system is ∼22 fs in full width at half-maximum, which is sufficient considering the temporal durations of the soft XFEL and the optical laser pulses.

5.
Nat Commun ; 10(1): 2186, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097703

RESUMO

The increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the development of single-object structural determination and of structural dynamics tracking in real-time. Disentangling the molecular-level reactions triggered by the interaction with an XFEL pulse is a fundamental step towards developing such applications. Here we report real-time observations of XFEL-induced electronic decay via short-lived transient electronic states in the diiodomethane molecule, using a femtosecond near-infrared probe laser. We determine the lifetimes of the transient states populated during the XFEL-induced Auger cascades and find that multiply charged iodine ions are issued from short-lived (∼20 fs) transient states, whereas the singly charged ones originate from significantly longer-lived states (∼100 fs). We identify the mechanisms behind these different time scales: contrary to the short-lived transient states which relax by molecular Auger decay, the long-lived ones decay by an interatomic Coulombic decay between two iodine atoms, during the molecular fragmentation.

6.
Phys Chem Chem Phys ; 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30989154

RESUMO

Understanding the excited state of photocatalysts is significant to improve their activity for water splitting reaction. X-ray absorption fine structure (XAFS) spectroscopy in X-ray free electron lasers (XFEL) is a powerful method to address dynamic changes in electronic states and structures of photocatalysts in the excited state in ultrafast short time scales. The ultrafast atomic-scale local structural change in photoexcited WO3 was observed by W L1 edge XAFS spectroscopy using an XFEL. An anisotropic local distortion around the W atom could reproduce well the spectral features at a delay time of 100 ps after photoexcitation based on full potential multiple scattering calculations. The distortion involved the movement of W to shrink the shortest W-O bonds and elongate the longest one. The movement of the W atom could be explained by the filling of the dxy and dzx orbitals, which were originally located at the bottom of the conduction band with photoexcited electrons.

7.
J Synchrotron Radiat ; 26(Pt 2): 333-338, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855240

RESUMO

X-ray optics were implemented for advanced ultrafast X-ray experiments with different techniques at the hard X-ray beamline BL3 of SPring-8 Ångstrom Compact free-electron LAser. A double channel-cut crystal monochromator (DCCM) and compound refractive lenses (CRLs) were installed to tailor the beam conditions. These X-ray optics can work simultaneously with an arrival-timing monitor that compensates for timing jitter and drift. Inner-walls of channel-cut crystals (CCs) in the DCCM were processed by plasma chemical vaporization machining to remove crystallographic damage. Four-bounced reflection profiles of the CCs were investigated and excellent diffraction qualities were achieved. The use of CRLs enabled two-dimensional X-ray focusing with a spot size of ∼1.5 µm × 1.5 µm full width at half-maximum, while keeping reasonable throughputs for a wide photon energy range of 5-15 keV.

8.
Phys Chem Chem Phys ; 21(1): 26-31, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30489577

RESUMO

The isothermal compressibility and correlation length of supercooled water obtained from small-angle X-ray scattering (SAXS) were analyzed by fits based on an apparent power-law in the temperature range from 280 K down to the temperature of maximum compressibility at 229 K. Although the increase in thermodynamic response functions is not towards a critical point, it is still possible to obtain an apparent power law all the way to the maximum values with best-fit exponents of γ = 0.40 ± 0.01 for the isothermal compressibility and ν = 0.26 ± 0.03 for the correlation length. The ratio between these exponents is close to a value of ≈0.5, as expected for a critical point, indicating the proximity of a potential second critical point. Comparison of γ obtained from experiment with molecular dynamics simulations on the iAMOEBA water model shows that it would be located at pressures in the neighborhood of 1 kbar. The high value and sharpness of the compressibility maximum observed in the experiment are not reproduced by any of the existing classical water models, thus inviting further development of simulation models of water.

9.
Science ; 362(6414): 572-576, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385575

RESUMO

Many ultrafast solid phase transitions are treated as chemical reactions that transform the structures between two different unit cells along a reaction coordinate, but this neglects the role of disorder. Although ultrafast diffraction provides insights into atomic dynamics during such transformations, diffraction alone probes an averaged unit cell and is less sensitive to randomness in the transition pathway. Using total scattering of femtosecond x-ray pulses, we show that atomic disordering in photoexcited vanadium dioxide (VO2) is central to the transition mechanism and that, after photoexcitation, the system explores a large volume of phase space on a time scale comparable to that of a single phonon oscillation. These results overturn the current understanding of an archetypal ultrafast phase transition and provide new microscopic insights into rapid evolution toward equilibrium in photoexcited matter.

10.
Phys Rev Lett ; 121(8): 083901, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192600

RESUMO

X-ray two-photon absorption (TPA) spectrum of metallic copper is measured using a free-electron laser (XFEL). The spectrum differs from that measured by the conventional one-photon absorption (OPA), and characterized by a peak below the Fermi level, which is assigned to the transition to the 3d state. The impact of the XFEL pulse on the OPA spectrum is discussed by analyzing the pulse-energy dependence, which indicates that the intrinsic TPA spectrum is measured.

11.
Science ; 360(6390)2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29773719

RESUMO

Caupin et al have raised several issues regarding our recent paper on maxima in thermodynamic response and correlation functions in deeply supercooled water. We show that these issues can be addressed without affecting the conclusion of the paper.


Assuntos
Termodinâmica , Água
12.
J Synchrotron Radiat ; 25(Pt 2): 592-603, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488941

RESUMO

X-ray free-electron laser (XFEL) pulses from SPring-8 Ångstrom Compact free-electron LAser (SACLA) with a temporal duration of <10 fs have provided a variety of benefits in scientific research. In a previous study, an arrival-timing monitor was developed to improve the temporal resolution in pump-probe experiments at beamline 3 by rearranging data in the order of the arrival-timing jitter between the XFEL and the synchronized optical laser pulses. This paper presents Timing Monitor Analyzer (TMA), a software package by which users can conveniently obtain arrival-timing data in the analysis environment at SACLA. The package is composed of offline tools that pull stored data from cache storage, and online tools that pull data from a data-handling server in semi-real time during beam time. Users can select the most suitable tool for their purpose, and share the results through a network connection between the offline and online analysis environments.

13.
Struct Dyn ; 5(6): 064501, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30868081

RESUMO

Material properties can be controlled via strain, pressure, chemical composition, or dimensionality. Nickelates are particularly susceptible due to their strong variations of the electronic and magnetic properties on such external stimuli. Here, we analyze the photoinduced dynamics in a single crystalline NdNiO3 film upon excitation across the electronic gap. Using time-resolved reflectivity and resonant x-ray diffraction, we show that the pump pulse induces an insulator-to-metal transition, accompanied by the melting of the charge order. Finally, we compare our results with similar studies in manganites and show that the same model can be used to describe the dynamics in nickelates, hinting towards a unified description of these photoinduced electronic ordering phase transitions.

14.
Science ; 358(6370): 1589-1593, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29269472

RESUMO

Femtosecond x-ray laser pulses were used to probe micrometer-sized water droplets that were cooled down to 227 kelvin in vacuum. Isothermal compressibility and correlation length were extracted from x-ray scattering at the low-momentum transfer region. The temperature dependence of these thermodynamic response and correlation functions shows maxima at 229 kelvin for water and 233 kelvin for heavy water. In addition, we observed that the liquids undergo the fastest growth of tetrahedral structures at similar temperatures. These observations point to the existence of a Widom line, defined as the locus of maximum correlation length emanating from a critical point at positive pressures in the deeply supercooled regime. The difference in the maximum value of the isothermal compressibility between the two isotopes shows the importance of nuclear quantum effects.

15.
Phys Rev Lett ; 119(7): 075502, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949651

RESUMO

Nuclear quantum effects (NQEs) have a significant influence on the hydrogen bonds in water and aqueous solutions and have thus been the topic of extensive studies. However, the microscopic origin and the corresponding temperature dependence of NQEs have been elusive and still remain the subject of ongoing discussion. Previous x-ray scattering investigations indicate that NQEs on the structure of water exhibit significant temperature dependence [Phys. Rev. Lett. 94, 047801 (2005)PRLTAO0031-900710.1103/PhysRevLett.94.047801]. Here, by performing wide-angle x-ray scattering of H_{2}O and D_{2}O droplets at temperatures from 275 K down to 240 K, we determine the temperature dependence of NQEs on the structure of water down to the deeply supercooled regime. The data reveal that the magnitude of NQEs on the structure of water is temperature independent, as the structure factor of D_{2}O is similar to H_{2}O if the temperature is shifted by a constant 5 K, valid from ambient conditions to the deeply supercooled regime. Analysis of the accelerated growth of tetrahedral structures in supercooled H_{2}O and D_{2}O also shows similar behavior with a clear 5 K shift. The results indicate a constant compensation between NQEs delocalizing the proton in the librational motion away from the bond and in the OH stretch vibrational modes along the bond. This is consistent with the fact that only the vibrational ground state is populated at ambient and supercooled conditions.

16.
Struct Dyn ; 4(4): 044033, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28713842

RESUMO

The charge-carrier dynamics of anatase TiO2 nanoparticles in an aqueous solution were studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser in combination with a synchronized ultraviolet femtosecond laser (268 nm). Using an arrival time monitor for the X-ray pulses, we obtained a temporal resolution of 170 fs. The transient X-ray absorption spectra revealed an ultrafast Ti K-edge shift and a subsequent growth of a pre-edge structure. The edge shift occurred in ca. 100 fs and is ascribed to reduction of Ti by localization of generated conduction band electrons into shallow traps of self-trapped polarons or deep traps at penta-coordinate Ti sites. Growth of the pre-edge feature and reduction of the above-edge peak intensity occur with similar time constants of 300-400 fs, which we assign to the structural distortion dynamics near the surface.

17.
Sci Adv ; 3(6): e1602705, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630909

RESUMO

The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of [Formula: see text] ~2 × 108 to 3.5 × 108 s-1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.

18.
Chem Commun (Camb) ; 53(53): 7314-7317, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28480915

RESUMO

Ultrafast excitation of photocatalytically active BiVO4 was characterized by femto- and picosecond transient X-ray absorption fine structure spectroscopy. An initial photoexcited state (≪500 fs) changed to a metastable state accompanied by a structural change with a time constant of ∼14 ps. The structural change might stabilize holes on oxygen atoms since the interaction between Bi and O increases.

19.
Phys Chem Chem Phys ; 19(30): 19707-19721, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28530728

RESUMO

Coulomb explosion of diiodomethane CH2I2 molecules irradiated by ultrashort and intense X-ray pulses from SACLA, the Japanese X-ray free electron laser facility, was investigated by multi-ion coincidence measurements and self-consistent charge density-functional-based tight-binding (SCC-DFTB) simulations. The diiodomethane molecule, containing two heavy-atom X-ray absorbing sites, exhibits a rather different charge generation and nuclear motion dynamics compared to iodomethane CH3I with only a single heavy atom, as studied earlier. We focus on charge creation and distribution in CH2I2 in comparison to CH3I. The release of kinetic energy into atomic ion fragments is also studied by comparing SCC-DFTB simulations with the experiment. Compared to earlier simulations, several key enhancements are made, such as the introduction of a bond axis recoil model, where vibrational energy generated during charge creation processes induces only bond stretching or shrinking. We also propose an analytical Coulomb energy partition model to extract the essential mechanism of Coulomb explosion of molecules from the computed and the experimentally measured kinetic energies of fragment atomic ions by partitioning each pair Coulomb interaction energy into two ions of the pair under the constraint of momentum conservation. Effective internuclear distances assigned to individual fragment ions at the critical moment of the Coulomb explosion are then estimated from the average kinetic energies of the ions. We demonstrate, with good agreement between the experiment and the SCC-DFTB simulation, how the more heavily charged iodine fragments and their interplay define the characteristic features of the Coulomb explosion of CH2I2. The present study also confirms earlier findings concerning the magnitude of bond elongation in the ultrashort X-ray pulse duration, showing that structural damage to all but C-H bonds does not develop to a noticeable degree in the pulse length of ∼10 fs.

20.
J Pediatr Hematol Oncol ; 39(5): e285-e289, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28267084

RESUMO

Liver fibrosis is one of the common complications of transient myeloproliferative disorder (TMD) in Down syndrome (DS), but the exact molecular pathogenesis is largely unknown. We herein report a neonate of DS with liver fibrosis associated with TMD, in which we performed the serial profibrogenic cytokines analyses. We found the active monocyte chemoattractant protein-1 expression in the affected liver tissue and also found that both serum and urinary monocyte chemoattractant protein-1 concentrations are noninvasive biomarkers of liver fibrosis. We also showed a prospective of the future anticytokine therapy with herbal medicine for the liver fibrosis associated with TMD in DS.


Assuntos
Quimiocina CCL2/análise , Síndrome de Down/complicações , Reação Leucemoide/complicações , Cirrose Hepática/diagnóstico , Biomarcadores , Citocinas/análise , Diagnóstico Diferencial , Humanos , Recém-Nascido , Fígado/química , Fígado/patologia , Cirrose Hepática/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA