Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 28(13): 3320-3328.e4, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553903

RESUMO

A copy-number variant (CNV) of 16p11.2 encompassing 30 genes is associated with developmental and psychiatric disorders, head size, and body mass. The genetic mechanisms that underlie these associations are not understood. To determine the influence of 16p11.2 genes on development, we investigated the effects of CNV on craniofacial structure in humans and model organisms. We show that deletion and duplication of 16p11.2 have "mirror" effects on specific craniofacial features that are conserved between human and rodent models of the CNV. By testing dosage effects of individual genes on the shape of the mandible in zebrafish, we identify seven genes with significant effects individually and find evidence for others when genes were tested in combination. The craniofacial phenotypes of 16p11.2 CNVs represent a model for studying the effects of genes on development, and our results suggest that the associated facial gestalts are attributable to the combined effects of multiple genes.

2.
Lab Chip ; 19(20): 3397-3404, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31508644

RESUMO

Contact-free manipulation of small objects (e.g., cells, tissues, and droplets) using acoustic waves eliminates physical contact with structures and undesired surface adsorption. Pioneering acoustic-based, contact-free manipulation techniques (e.g., acoustic levitation) enable programmable manipulation but are limited by evaporation, bulky transducers, and inefficient acoustic coupling in air. Herein, we report an acoustofluidic mechanism for the contactless manipulation of small objects on water. A hollow-square-shaped interdigital transducer (IDT) is fabricated on lithium niobate (LiNbO3), immersed in water and used as a sound source to generate acoustic waves and as a micropump to pump fluid in the ±x and ±y orthogonal directions. As a result, objects which float adjacent to the excited IDT can be pushed unidirectionally (horizontally) in ±x and ±y following the directed acoustic wave propagation. A fluidic processor was developed by patterning IDT units in a 6-by-6 array. We demonstrate contactless, programmable manipulation on water of oil droplets and zebrafish larvae. This acoustofluidic-based manipulation opens avenues for the contactless, programmable processing of materials and small biosamples.

3.
J Clin Invest ; 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31550240

RESUMO

Inherited optic neuropathies include complex phenotypes, mostly driven by mitochondrial dysfunction. We report an optic atrophy spectrum disorder, including retinal macular dystrophy and kidney insufficiency leading to transplantation, associated with mitochondrial DNA (mtDNA) depletion without accumulation of multiple deletions. By whole-exome sequencing, we identified mutations affecting the mitochondrial single strand binding protein (SSBP1) in four families with dominant and one with recessive inheritance. We show that SSBP1 mutations in patient-derived fibroblasts variably affect its amount and alter multimer formation, but not the binding to ssDNA. SSBP1 mutations impaired mtDNA, nucleoids and 7S-DNA amounts as well as mtDNA replication, impacting replisome machinery. The variable mtDNA depletion in cells reflected in severity of mitochondrial dysfunction, including respiratory efficiency, OXPHOS subunits and complexes amount and assembly. mtDNA depletion and cytochrome c oxidase-negative cells were found ex-vivo in biopsies of affected tissues, like kidney and skeletal muscle. Reduced efficiency of mtDNA replication was also reproduced in vitro, confirming the pathogenic mechanism. Furthermore, ssbp1 suppression in zebrafish induced signs of nephropathy and reduced optic nerve size, the latter phenotype complemented by wild-type mRNA but not by SSBP1 mutant transcripts. This previously unrecognized disease of mtDNA maintenance implicates SSBP1 mutations as cause of human pathology.

4.
Hum Mutat ; 40(9): 1474-1485, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31260570

RESUMO

The CAGI-5 pericentriolar material 1 (PCM1) challenge aimed to predict the effect of 38 transgenic human missense mutations in the PCM1 protein implicated in schizophrenia. Participants were provided with 16 benign variants (negative controls), 10 hypomorphic, and 12 loss of function variants. Six groups participated and were asked to predict the probability of effect and standard deviation associated to each mutation. Here, we present the challenge assessment. Prediction performance was evaluated using different measures to conclude in a final ranking which highlights the strengths and weaknesses of each group. The results show a great variety of predictions where some methods performed significantly better than others. Benign variants played an important role as negative controls, highlighting predictors biased to identify disease phenotypes. The best predictor, Bromberg lab, used a neural-network-based method able to discriminate between neutral and non-neutral single nucleotide polymorphisms. The CAGI-5 PCM1 challenge allowed us to evaluate the state of the art techniques for interpreting the effect of novel variants for a difficult target protein.

5.
Zebrafish ; 16(4): 363-369, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31188077

RESUMO

Otoliths (ear stones) are biomineralized complexes essential for the balancing and hearing function of the inner ears in fish. Their formation is controlled by a genetically programmed biological process that is yet to be defined. We have isolated and characterized a spontaneous genetic mutant zebrafish with a complete absence of otoliths, named no otolith 1 (not1). not1 mutants are unable to develop otoliths during embryonic stages and fail to respond to acoustic stimuli, indicating an inner ear defect. We identified a deleterious mutation (G239R) that altered a highly conserved amino acid residue in the zebrafish ortholog of type I polyketide synthase (pks1) to underlie these phenotypes and showed that expression of the polyketide synthase gene of Japanese medaka fish could rescue the otolith deficiency in not1 mutant zebrafish. Our finding highlights a critical and conserved role of type I polyketide synthase in the initiation of otolith formation. Given the functional homology between otoliths in teleost fish and otoconia in mammals and humans, not1 mutants provide a new animal model for the study of human otoconia-related diseases.

6.
Am J Hum Genet ; 104(6): 1073-1087, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079899

RESUMO

Cargo transport along the cytoplasmic microtubular network is essential for neuronal function, and cytoplasmic dynein-1 is an established molecular motor that is critical for neurogenesis and homeostasis. We performed whole-exome sequencing, homozygosity mapping, and chromosomal microarray studies in five individuals from three independent pedigrees and identified likely-pathogenic variants in DYNC1I2 (Dynein Cytoplasmic 1 Intermediate Chain 2), encoding a component of the cytoplasmic dynein 1 complex. In a consanguineous Pakistani family with three affected individuals presenting with microcephaly, severe intellectual disability, simplification of cerebral gyration, corpus callosum hypoplasia, and dysmorphic facial features, we identified a homozygous splice donor site variant (GenBank: NM_001378.2:c.607+1G>A). We report two additional individuals who have similar neurodevelopmental deficits and craniofacial features and harbor deleterious variants; one individual bears a c.740A>G (p.Tyr247Cys) change in trans with a 374 kb deletion encompassing DYNC1I2, and an unrelated individual harbors the compound-heterozygous variants c.868C>T (p.Gln290∗) and c.740A>G (p.Tyr247Cys). Zebrafish larvae subjected to CRISPR-Cas9 gene disruption or transient suppression of dync1i2a displayed significantly altered craniofacial patterning with concomitant reduction in head size. We monitored cell death and cell cycle progression in dync1i2a zebrafish models and observed significantly increased apoptosis, likely due to prolonged mitosis caused by abnormal spindle morphology, and this finding offers initial insights into the cellular basis of microcephaly. Additionally, complementation studies in zebrafish demonstrate that p.Tyr247Cys attenuates gene function, consistent with protein structural analysis. Our genetic and functional data indicate that DYNC1I2 dysfunction probably causes an autosomal-recessive microcephaly syndrome and highlight further the critical roles of the dynein-1 complex in neurodevelopment.

7.
Am J Hum Genet ; 104(6): 1233-1240, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130285

RESUMO

Noonan syndrome (NS) is characterized by distinctive craniofacial appearance, short stature, and congenital heart disease. Approximately 80% of individuals with NS harbor mutations in genes whose products are involved in the RAS/mitogen-activating protein kinase (MAPK) pathway. However, the underlying genetic causes in nearly 20% of individuals with NS phenotype remain unexplained. Here, we report four de novo RRAS2 variants in three individuals with NS. RRAS2 is a member of the RAS subfamily and is ubiquitously expressed. Three variants, c.70_78dup (p.Gly24_Gly26dup), c.216A>T (p.Gln72His), and c.215A>T (p.Gln72Leu), have been found in cancers; our functional analyses showed that these three changes induced elevated association of RAF1 and that they activated ERK1/2 and ELK1. Notably, prominent activation of ERK1/2 and ELK1 by p.Gln72Leu associates with the severe phenotype of the individual harboring this change. To examine variant pathogenicity in vivo, we generated zebrafish models. Larvae overexpressing c.70_78dup (p.Gly24_Gly26dup) or c.216A>T (p.Gln72His) variants, but not wild-type RRAS2 RNAs, showed craniofacial defects and macrocephaly. The same dose injection of mRNA encoding c.215A>T (p.Gln72Leu) caused severe developmental impairments and low dose overexpression of this variant induced craniofacial defects. In contrast, the RRAS2 c.224T>G (p.Phe75Cys) change, located on the same allele with p.Gln72His in an individual with NS, resulted in no aberrant in vitro or in vivo phenotypes by itself. Together, our findings suggest that activating RRAS2 mutations can cause NS and expand the involvement of RRAS2 proto-oncogene to rare germline disorders.

8.
Genet Med ; 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31036918

RESUMO

PURPOSE: The purpose of this study was to expand the genetic architecture of neurodevelopmental disorders, and to characterize the clinical features of a novel cohort of affected individuals with variants in ZNF142, a C2H2 domain-containing transcription factor. METHODS: Four independent research centers used exome sequencing to elucidate the genetic basis of neurodevelopmental phenotypes in four unrelated families. Following bioinformatic filtering, query of control data sets, and secondary variant confirmation, we aggregated findings using an online data sharing platform. We performed in-depth clinical phenotyping in all affected individuals. RESULTS: We identified seven affected females in four pedigrees with likely pathogenic variants in ZNF142 that segregate with recessive disease. Affected cases in three families harbor either nonsense or frameshifting likely pathogenic variants predicted to undergo nonsense mediated decay. One additional trio bears ultrarare missense variants in conserved regions of ZNF142 that are predicted to be damaging to protein function. We performed clinical comparisons across our cohort and noted consistent presence of intellectual disability and speech impairment, with variable manifestation of seizures, tremor, and dystonia. CONCLUSION: Our aggregate data support a role for ZNF142 in nervous system development and add to the emergent list of zinc finger proteins that contribute to neurocognitive disorders.

9.
Hum Genomics ; 13(1): 19, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992063

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis [1] is a genetically heterogeneous neurodegenerative disorder, characterized by late-onset degeneration of motor neurons leading to progressive limb and bulbar weakness, as well as of the respiratory muscles, which is the primary cause of disease fatality. To date, over 25 genes have been implicated as causative in ALS with C9orf72, SOD1, FUS, and TARDBP accounting for the majority of genetically positive cases. RESULTS: We identified two patients of Italian and French ancestry with a clinical diagnosis of juvenile-onset ALS who were mutation-negative in any of the known ALS causative genes. Starting with the index case, a consanguineous family of Italian origin, we performed whole-exome sequencing and identified candidate pathogenic mutations in 35 genes, 27 of which were homozygous. We next parsed all candidates against a cohort of 3641 ALS cases; only ATP13A2 was found to harbor recessive changes, in a patient with juvenile-onset ALS, similar to the index case. In vivo complementation of ATP13A2 using a zebrafish surrogate model that focused on the assessment of motor neuron morphology and cerebellar integrity confirmed the role of this gene in central and peripheral nervous system maintenance and corroborated the damaging direction of effect of the change detected in the index case of this study. CONCLUSIONS: We here expand the phenotypic spectrum associated with genetic variants in ATP13A2 that previously comprised Kufor-Rakeb syndrome, spastic paraplegia 78, and neuronal ceroid lipofuscinosis type 12 (CLN12), to also include juvenile-onset ALS, as supported by both genetic and functional data. Our findings highlight the importance of establishing a complete genetic profile towards obtaining an accurate clinical diagnosis.

10.
Am J Hum Genet ; 104(1): 94-111, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609410

RESUMO

The use of whole-exome and whole-genome sequencing has been a catalyst for a genotype-first approach to diagnostics. Under this paradigm, we have implemented systematic sequencing of neonates and young children with a suspected genetic disorder. Here, we report on two families with recessive mutations in NCAPG2 and overlapping clinical phenotypes that include severe neurodevelopmental defects, failure to thrive, ocular abnormalities, and defects in urogenital and limb morphogenesis. NCAPG2 encodes a member of the condensin II complex, necessary for the condensation of chromosomes prior to cell division. Consistent with a causal role for NCAPG2, we found abnormal chromosome condensation, augmented anaphase chromatin-bridge formation, and micronuclei in daughter cells of proband skin fibroblasts. To test the functional relevance of the discovered variants, we generated an ncapg2 zebrafish model. Morphants displayed clinically relevant phenotypes, such as renal anomalies, microcephaly, and concomitant increases in apoptosis and altered mitotic progression. These could be rescued by wild-type but not mutant human NCAPG2 mRNA and were recapitulated in CRISPR-Cas9 F0 mutants. Finally, we noted that the individual with a complex urogenital defect also harbored a heterozygous NPHP1 deletion, a common contributor to nephronophthisis. To test whether sensitization at the NPHP1 locus might contribute to a more severe renal phenotype, we co-suppressed nphp1 and ncapg2, which resulted in significantly more dysplastic renal tubules in zebrafish larvae. Together, our data suggest that impaired function of NCAPG2 results in a severe condensinopathy, and they highlight the potential utility of examining candidate pathogenic lesions beyond the primary disease locus.

11.
Hum Mol Genet ; 28(9): 1474-1486, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590535

RESUMO

The 16p11.2 BP4-BP5 deletion and duplication syndromes are associated with a complex spectrum of neurodevelopmental phenotypes that includes developmental delay and autism spectrum disorder, with a reciprocal effect on head circumference, brain structure and body mass index. Mouse models of the 16p11.2 copy number variant have recapitulated some of the patient phenotypes, while studies in flies and zebrafish have uncovered several candidate contributory genes within the region, as well as complex genetic interactions. We evaluated one of these loci, KCTD13, by modeling haploinsufficiency and complete knockout in mice. In contrast to the zebrafish model, and in agreement with recent data, we found normal brain structure in heterozygous and homozygous mutants. However, recapitulating previously observed genetic interactions, we discovered sex-specific brain volumetric alterations in double heterozygous Kctd13xMvp and Kctd13xLat mice. Behavioral testing revealed a significant deficit in novel object recognition, novel location recognition and social transmission of food preference in Kctd13 mutants. These phenotypes were concomitant with a reduction in density of mature spines in the hippocampus, but potentially independent of RhoA abundance, which was unperturbed postnatally in our mutants. Furthermore, transcriptome analyses from cortex and hippocampus highlighted the dysregulation of pathways important in neurodevelopment, the most significant of which was synaptic formation. Together, these data suggest that KCTD13 contributes to the neurocognitive aspects of patients with the BP4-BP5 deletion, likely through genetic interactions with other loci.

12.
Blood ; 133(12): 1346-1357, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30591527

RESUMO

Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders characterized by low platelet count that may result in bleeding tendency. Despite progress being made in defining the genetic causes of ITs, nearly 50% of patients with familial thrombocytopenia are affected with forms of unknown origin. Here, through exome sequencing of 2 siblings with autosomal-recessive thrombocytopenia, we identified biallelic loss-of-function variants in PTPRJ . This gene encodes for a receptor-like PTP, PTPRJ (or CD148), which is expressed abundantly in platelets and megakaryocytes. Consistent with the predicted effects of the variants, both probands have an almost complete loss of PTPRJ at the messenger RNA and protein levels. To investigate the pathogenic role of PTPRJ deficiency in hematopoiesis in vivo, we carried out CRISPR/Cas9-mediated ablation of ptprja (the ortholog of human PTPRJ) in zebrafish, which induced a significantly decreased number of CD41+ thrombocytes in vivo. Moreover, megakaryocytes of our patients showed impaired maturation and profound defects in SDF1-driven migration and formation of proplatelets in vitro. Silencing of PTPRJ in a human megakaryocytic cell line reproduced the functional defects observed in patients' megakaryocytes. The disorder caused by PTPRJ mutations presented as a nonsyndromic thrombocytopenia characterized by spontaneous bleeding, small-sized platelets, and impaired platelet responses to the GPVI agonists collagen and convulxin. These platelet functional defects could be attributed to reduced activation of Src family kinases. Taken together, our data identify a new form of IT and highlight a hitherto unknown fundamental role for PTPRJ in platelet biogenesis.

13.
Curr Opin Cell Biol ; 55: 139-149, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30138887

RESUMO

Cilia are microtubule-based appendages present on almost all vertebrate cell types where they mediate a myriad of cellular processes critical for development and homeostasis. In humans, impaired ciliary function is associated with an ever-expanding repertoire of phenotypically-overlapping yet highly variable genetic disorders, the ciliopathies. Extensive work to elucidate the structure, function, and composition of the cilium is offering hints that the `static' representation of the cilium is a gross oversimplification of a highly dynamic organelle whose functions are choreographed dynamically across cell types, developmental, and homeostatic contexts. Understanding this diversity will require discerning ciliary versus non-ciliary roles for classically-defined `ciliary' proteins; defining ciliary protein-protein interaction networks within and beyond the cilium; and resolving the spatiotemporal diversity of ciliary structure and function. Here, focusing on one evolutionarily conserved ciliary module, the intraflagellar transport system, we explore these ideas and propose potential future studies that will improve our knowledge gaps of the oversimplified cilium and, by extension, inform the reasons that underscore the striking range of clinical pathologies associated with ciliary dysfunction.

14.
Sci Rep ; 8(1): 10779, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018450

RESUMO

Kabuki Syndrome (KS) is a rare disorder characterized by distinctive facial features, short stature, skeletal abnormalities, and neurodevelopmental deficits. Previously, we showed that loss of function of RAP1A, a RAF1 regulator, can activate the RAS/MAPK pathway and cause KS, an observation recapitulated in other genetic models of the disorder. These data suggested that suppression of this signaling cascade might be of therapeutic benefit for some features of KS. To pursue this possibility, we performed a focused small molecule screen of a series of RAS/MAPK pathway inhibitors, where we tested their ability to rescue disease-relevant phenotypes in a zebrafish model of the most common KS locus, kmt2d. Consistent with a pathway-driven screening paradigm, two of 27 compounds showed reproducible rescue of early developmental pathologies. Further analyses showed that one compound, desmethyl-Dabrafenib (dmDf), induced no overt pathologies in zebrafish embryos but could rescue MEK hyperactivation in vivo and, concomitantly, structural KS-relevant phenotypes in all KS zebrafish models (kmt2d, kmd6a and rap1). Mass spectrometry quantitation suggested that a 100 nM dose resulted in sub-nanomolar exposure of this inhibitor and was sufficient to rescue both mandibular and neurodevelopmental defects. Crucially, germline kmt2d mutants recapitulated the gastrulation movement defects, micrognathia and neurogenesis phenotypes of transient models; treatment with dmDf ameliorated all of them significantly. Taken together, our data reinforce a causal link between MEK hyperactivation and KS and suggest that chemical suppression of BRAF might be of potential clinical utility for some features of this disorder.

15.
Neurology ; 91(4): e319-e330, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29959261

RESUMO

OBJECTIVE: To characterize clinically and molecularly an early-onset, variably progressive neurodegenerative disorder characterized by a cerebellar syndrome with severe ataxia, gaze palsy, dyskinesia, dystonia, and cognitive decline affecting 11 individuals from 3 consanguineous families. METHODS: We used whole-exome sequencing (WES) (families 1 and 2) and a combined approach based on homozygosity mapping and WES (family 3). We performed in vitro studies to explore the effect of the nontruncating SQSTM1 mutation on protein function and the effect of impaired SQSTM1 function on autophagy. We analyzed the consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in vivo using zebrafish as a model. RESULTS: We identified 3 homozygous inactivating variants, including a splice site substitution (c.301+2T>A) causing aberrant transcript processing and accelerated degradation of a resulting protein lacking exon 2, as well as 2 truncating changes (c.875_876insT and c.934_936delinsTGA). We show that loss of SQSTM1 causes impaired production of ubiquitin-positive protein aggregates in response to misfolded protein stress and decelerated autophagic flux. The consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in zebrafish documented a variable but reproducible phenotype characterized by cerebellum anomalies ranging from depletion of axonal connections to complete atrophy. We provide a detailed clinical characterization of the disorder; the natural history is reported for 2 siblings who have been followed up for >20 years. CONCLUSIONS: This study offers an accurate clinical characterization of this recently recognized neurodegenerative disorder caused by biallelic inactivating mutations in SQSTM1 and links this phenotype to defective selective autophagy.

16.
G3 (Bethesda) ; 8(7): 2215-2223, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29760202

RESUMO

Trisomy for human chromosome 21 (Hsa21) results in Down syndrome (DS), one of the most genetically complex conditions compatible with human survival. Assessment of the physiological consequences of dosage-driven overexpression of individual Hsa21 genes during early embryogenesis and the resulting contributions to DS pathology in mammals are not tractable in a systematic way. A recent study looked at loss-of-function of a subset of Caenorhabditis elegans orthologs of Hsa21 genes and identified ten candidates with behavioral phenotypes, but the equivalent over-expression experiment has not been done. We turned to zebrafish as a developmental model and, using a number of surrogate phenotypes, we screened Hsa21 genes for effects on early embyrogenesis. We prepared a library of 164 cDNAs of conserved protein coding genes, injected mRNA into early embryos and evaluated up to 5 days post-fertilization (dpf). Twenty-four genes produced a gross morphological phenotype, 11 of which could be reproduced reliably. Seven of these gave a phenotype consistent with down regulation of the sonic hedgehog (Shh) pathway; two showed defects indicative of defective neural crest migration; one resulted consistently in pericardial edema; and one was embryonic lethal. Combinatorial injections of multiple Hsa21 genes revealed both additive and compensatory effects, supporting the notion that complex genetic relationships underlie end phenotypes of trisomy that produce DS. Together, our data suggest that this system is useful in the genetic dissection of dosage-sensitive gene effects on early development and can inform the contribution of both individual loci and their combinatorial effects to phenotypes relevant to the etiopathology of DS.


Assuntos
Cromossomos Humanos Par 21 , Regulação da Expressão Gênica no Desenvolvimento , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Modelos Animais de Doenças , Síndrome de Down/genética , Dosagem de Genes , Biblioteca Gênica , Estudos de Associação Genética , Teste de Complementação Genética , Humanos , Fenótipo
17.
Mol Psychiatry ; 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728705

RESUMO

RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.

18.
Nat Genet ; 50(4): 538-548, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29632383

RESUMO

Genome-wide association studies (GWAS) have identified over 100 risk loci for schizophrenia, but the causal mechanisms remain largely unknown. We performed a transcriptome-wide association study (TWAS) integrating a schizophrenia GWAS of 79,845 individuals from the Psychiatric Genomics Consortium with expression data from brain, blood, and adipose tissues across 3,693 primarily control individuals. We identified 157 TWAS-significant genes, of which 35 did not overlap a known GWAS locus. Of these 157 genes, 42 were associated with specific chromatin features measured in independent samples, thus highlighting potential regulatory targets for follow-up. Suppression of one identified susceptibility gene, mapk3, in zebrafish showed a significant effect on neurodevelopmental phenotypes. Expression and splicing from the brain captured most of the TWAS effect across all genes. This large-scale connection of associations to target genes, tissues, and regulatory features is an essential step in moving toward a mechanistic understanding of GWAS.

19.
Hum Genomics ; 12(1): 11, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490693

RESUMO

BACKGROUND: Intellectual disability (ID) is a common condition with a population prevalence frequency of 1-3% and an enrichment for males, driven in part by the contribution of mutant alleles on the X-chromosome. Among the more than 500 genes associated with ID, DDX3X represents an outlier in sex specificity. Nearly all reported pathogenic variants of DDX3X are de novo, affect mostly females, and appear to be loss of function variants, consistent with the hypothesis that haploinsufficiency at this locus on the X-chromosome is likely to be lethal in males. RESULTS: We evaluated two male siblings with syndromic features characterized by mild-to-moderate ID and progressive spasticity. Quad-based whole-exome sequencing revealed a maternally inherited missense variant encoding p.R79K in DDX3X in both siblings and no other apparent pathogenic variants. We assessed its possible relevance to their phenotype using an established functional assay for DDX3X activity in zebrafish embryos and found that this allele causes a partial loss of DDX3X function and thus represents a hypomorphic variant. CONCLUSIONS: Our genetic and functional data suggest that partial loss of function of DDX3X can cause syndromic ID. The p.R79K allele affects a region of the protein outside the critical RNA helicase domain, offering a credible explanation for the observed retention of partial function, viability in hemizygous males, and lack of pathology in females. These findings expand the gender spectrum of pathology of this locus and suggest that analysis for DDX3X variants should be considered relevant for both males and females.

20.
Am J Hum Genet ; 102(3): 355-358, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499161
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA