Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 604(7906): 451-456, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444318

RESUMO

The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems1,2. In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation3-5. We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state6,7. Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits8 and a toric code state on a torus with sixteen data and eight ancillary qubits9. Finally, we use this architecture to realize a hybrid analogue-digital evolution2 and use it for measuring entanglement entropy in quantum simulations10-12, experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars13,14. Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology.

2.
Nature ; 595(7866): 227-232, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234334

RESUMO

Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing1, a broad effort is currently underway to build large-scale programmable quantum systems. Such systems provide insights into strongly correlated quantum matter2-6, while at the same time enabling new methods for computation7-10 and metrology11. Here we demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled by coherent atomic excitation into Rydberg states12. Using this approach, we realize a quantum spin model with tunable interactions for system sizes ranging from 64 to 256 qubits. We benchmark the system by characterizing high-fidelity antiferromagnetically ordered states and demonstrating quantum critical dynamics consistent with an Ising quantum phase transition in (2 + 1) dimensions13. We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation14, experimentally map the phase diagram and investigate the role of quantum fluctuations. Offering a new lens into the study of complex quantum matter, these observations pave the way for investigations of exotic quantum phases, non-equilibrium entanglement dynamics and hardware-efficient realization of quantum algorithms.

3.
Phys Rev Lett ; 123(23): 230504, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868463

RESUMO

We demonstrate quantum many-body state reconstruction from experimental data generated by a programmable quantum simulator by means of a neural-network model incorporating known experimental errors. Specifically, we extract restricted Boltzmann machine wave functions from data produced by a Rydberg quantum simulator with eight and nine atoms in a single measurement basis and apply a novel regularization technique to mitigate the effects of measurement errors in the training data. Reconstructions of modest complexity are able to capture one- and two-body observables not accessible to experimentalists, as well as more sophisticated observables such as the Rényi mutual information. Our results open the door to integration of machine learning architectures with intermediate-scale quantum hardware.

4.
Phys Rev Lett ; 123(17): 170503, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702233

RESUMO

We report the implementation of universal two- and three-qubit entangling gates on neutral-atom qubits encoded in long-lived hyperfine ground states. The gates are mediated by excitation to strongly interacting Rydberg states and are implemented in parallel on several clusters of atoms in a one-dimensional array of optical tweezers. Specifically, we realize the controlled-phase gate, enacted by a novel, fast protocol involving only global coupling of two qubits to Rydberg states. We benchmark this operation by preparing Bell states with fidelity F≥95.0(2)%, and extract gate fidelity ≥97.4(3)%, averaged across five atom pairs. In addition, we report a proof-of-principle implementation of the three-qubit Toffoli gate, in which two control atoms simultaneously constrain the behavior of one target atom. These experiments demonstrate key ingredients for high-fidelity quantum information processing in a scalable neutral-atom platform.

5.
Opt Lett ; 44(12): 3178-3181, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199410

RESUMO

In this Letter, to the best of our knowledge, we report a new method to generate uniform large-scale optical focus arrays (LOFAs). By identifying and removing undesired phase rotation in the iterative Fourier transform algorithm (IFTA), our approach rapidly produces computer-generated holograms of highly uniform LOFAs. The new algorithm also shows a faster compensation of system-induced LOFA intensity inhomogeneity than the conventional IFTA. After only three adaptive correction steps, we demonstrate LOFAs consisting of O(103) optical foci with an intensity uniformity greater than 98%.

6.
Nature ; 568(7751): 207-211, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936552

RESUMO

Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations1. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates2-5, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge6. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM)7-9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models10,11, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories12,13 and applications to quantum optimization14,15.

7.
Phys Rev Lett ; 121(12): 123603, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296143

RESUMO

Individual neutral atoms excited to Rydberg states are a promising platform for quantum simulation and quantum information processing. However, experimental progress to date has been limited by short coherence times and relatively low gate fidelities associated with such Rydberg excitations. We report progress towards high-fidelity quantum control of Rydberg-atom qubits. Enabled by a reduction in laser phase noise, our approach yields a significant improvement in coherence properties of individual qubits. We further show that this high-fidelity control extends to the multi-particle case by preparing a two-atom entangled state with a fidelity exceeding 0.97(3), and extending its lifetime with a two-atom dynamical decoupling protocol. These advances open up new prospects for scalable quantum simulation and quantum computation with neutral atoms.

8.
Nature ; 551(7682): 579-584, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29189778

RESUMO

Controllable, coherent many-body systems can provide insights into the fundamental properties of quantum matter, enable the realization of new quantum phases and could ultimately lead to computational systems that outperform existing computers based on classical approaches. Here we demonstrate a method for creating controlled many-body quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms with strong, coherent interactions enabled by excitation to Rydberg states. We realize a programmable Ising-type quantum spin model with tunable interactions and system sizes of up to 51 qubits. Within this model, we observe phase transitions into spatially ordered states that break various discrete symmetries, verify the high-fidelity preparation of these states and investigate the dynamics across the phase transition in large arrays of atoms. In particular, we observe robust many-body dynamics corresponding to persistent oscillations of the order after a rapid quantum quench that results from a sudden transition across the phase boundary. Our method provides a way of exploring many-body phenomena on a programmable quantum simulator and could enable realizations of new quantum algorithms.

9.
Science ; 354(6315): 1024-1027, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27811284

RESUMO

The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a platform for the deterministic preparation of regular one-dimensional arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of more than 50 atoms in less than 400 milliseconds. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach may enable controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...