Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 203: 117506, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371231

RESUMO

The bacterial growth potential (BGP) of drinking water is widely assessed either by flow cytometric intact cell count (BGPICC) or adenosine triphosphate (BGPATP) based methods. Combining BGPICC and BGPATP measurements has been previously applied for various types of drinking water having high to low growth potential. However, this has not been applied for water with ultra-low nutrient content, such as remineralised RO permeate. To conduct a sound comparison, conventionally treated drinking water was included in this study, which was also used as an inoculum source. BGPICC, BGPATP, intact cell-yield (YICC), and ATP-yield (YATP) were determined for conventionally treated drinking water (Tap-water) and remineralised RO permeate (RO-water). In addition, both BGPICC and BGPATP methods were used to identify the growth-limiting nutrient in each water type. The results showed that the BGPICC ratio between Tap-water/RO-water was ∼7.5, whereas the BGPATP ratio was only ∼4.5. Moreover, the YICC ratio between Tap-water/RO-water was ∼2 (9.8 ± 0.6 × 106 vs. 4.6 ± 0.8 × 106 cells/µg-C), whereas the YATP ratio was ∼1 (0.39 ± 0.12 vs. 0.42 ± 0.06 ng ATP/µg-C), resulting in a consistently higher ATP per cell in RO-water than that of Tap-water. Both BGPICC and BGPATP methods revealed that carbon was the growth-limiting nutrient in the two types of water. However, with the addition of extra carbon, phosphate limitation was detected only with the BGPICC method, whereas BGPATP was not affected, suggesting that a combination of carbon and phosphate is essential for biomass synthesis, whereas carbon is probably utilised for cellular activities other than cell synthesis when phosphate is limited. It was estimated that the intact cell-yield growing on phosphate would be 0.70 ± 0.05 × 109 cells/µg PO4-P.


Assuntos
Água Potável , Purificação da Água , Trifosfato de Adenosina , Contagem de Células , Nutrientes , Osmose
2.
Membranes (Basel) ; 11(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673528

RESUMO

In this study, the removal of particulate, organic and biological fouling potential was investigated in the two-stage dual media filtration (DMF) pretreatment of a full-scale seawater reverse osmosis (SWRO) desalination plant. Moreover, the removal of fouling potential in two-stage DMF (DMF pretreatment) was compared with the removal in two-stage DMF installed after dissolved air floatation (DAF) (DAF-DMF pretreatment). For this purpose, the silt density index (SDI), modified fouling index (MFI), bacterial growth potential (BGP), organic fractions and microbial adenosine triphosphate (ATP) were monitored in the pretreatment processes of two full-scale SWRO plants. Particulate fouling potential was well controlled through the two stages of DMF with significant removal of SDI15 (>80%), MFI0.45 (94%) and microbial ATP (>95%). However, lower removal of biological/organic fouling potential (24-41%) was observed due to frequent chlorination (weekly) of the pretreatment, resulting in low biological activity in the DMFs. Therefore, neutralizing chlorine before media filtration is advised, rather than after, as is the current practice in many full-scale SWRO plants. Comparing overall removal in the DAF-DMF pretreatment to that of the DMF pretreatment showed that DAF improved the removal of biological/organic fouling potential, in which the removal of BGP and biopolymers increased by 40% and 16%, respectively. Overall, monitoring ATP and BGP during the pretreatment processes, particularly in DMF, would be beneficial to enhance biological degradation and lower biofouling potential in SWRO feed water.

3.
Membranes (Basel) ; 10(11)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233394

RESUMO

Several potential growth methods have been developed to monitor biological/organic fouling potential in seawater reverse osmosis (SWRO), but to date the correlation between these methods and biofouling of SWRO has not been demonstrated. In this research, the relation between a new adenosine triphosphate (ATP)-based bacterial growth potential (BGP) test of SWRO feed water and SWRO membrane performance is investigated. For this purpose, the pre-treatment of a full-scale SWRO plant including dissolved air flotation (DAF) and two stage dual media filtration (DMF) was monitored for 5 months using BGP, orthophosphate, organic fractions by liquid chromatography coupled with organic carbon detection (LC-OCD), silt density index (SDI), and modified fouling index (MFI). Results showed that particulate fouling potential was well controlled through the SWRO pre-treatment as the measured SDI and MFI in the SWRO feed water were below the recommended values. DAF in combination with coagulation (1-5 mg-Fe3+/L) consistently achieved 70% removal of orthophosphate, 50% removal of BGP, 25% removal of biopolymers, and 10% removal of humic substances. Higher BGP (100-950 µg-C/L) in the SWRO feed water corresponded to a higher normalized pressure drop in the SWRO, suggesting the applicability of using BGP as a biofouling indicator in SWRO systems. However, to validate this conclusion, more SWRO plants with different pre-treatment systems need to be monitored for longer periods of time.

4.
Water Res ; 186: 116317, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841931

RESUMO

Although water produced by reverse osmosis (RO) filtration has low bacterial growth potential (BGP), post-treatment of RO permeate, which is necessary prior to distribution and human consumption, needs to be examined because of the potential re-introduction of nutrients/contaminants. In this study, drinking water produced from anaerobic groundwater by RO and post-treatment (ion exchange, calcite contactors, and aeration) was compared with that produced by conventional treatment comprising (dry) sand filtration, pellet softening, rapid sand filtration, activated carbon filtration, and UV disinfection. The multi-parametric assessment of biological stability included bacterial quantification, nutrient concentration and composition as well as bacterial community composition and diversity. Results showed that RO permeate remineralised in the laboratory has an extremely low BGP (50 ± 12 × 103 ICC/mL), which increased to 130 ± 10 × 103 ICC/mL after site post-treatment. Despite the negative impact of post-treatment, the BGP of the finished RO-treated water was >75% lower than that of conventionally treated water. Organic carbon limited bacterial growth in both RO-treated and conventionally treated waters. The increased BGP in RO-treated water was caused by the re-introduction of nutrients during post-treatment. Similarly, OTUs introduced during post-treatment, assigned to the phyla of Proteobacteria and Bacteroidetes (75-85%), were not present in the source groundwater. Conversely, conventionally treated water shared some OTUs with the source groundwater. It is clear that RO-based treatment achieved an extremely low BGP, which can be further improved by optimising post-treatment, such as using high purity calcite. The multi-parametric approach adopted in this study can offer insights into growth characteristics including limiting nutrients (why) and dominating genera growing (who), which is essential to manage microbiological water quality in water treatment and distribution systems.


Assuntos
Água Potável , Água Subterrânea , Purificação da Água , Filtração , Humanos , Membranas Artificiais , Osmose
5.
Front Microbiol ; 11: 791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411118

RESUMO

Measuring bacterial growth potential (BGP) involves sample pre-treatment and inoculation, both of which may introduce contaminants in ultra-low nutrient water (e.g., remineralized RO permeate). Pasteurization pre-treatment may lead to denaturing of nutrients, and membrane filtration may leach/remove nutrients into/from water samples. Inoculating remineralized RO permeate samples with natural bacteria from conventional drinking water leads to undesired nutrient addition, which could be avoided by using the remineralized RO permeate itself as inoculum. Therefore, this study examined the effect of pasteurization and membrane filtration on the BGP of remineralized RO permeate. In addition, the possibility of using bacteria from remineralized RO permeate as inoculum was investigated by evaluating their ability to utilize organic carbon that is readily available (acetate, glucose) or complex (laminarin, gelatin, and natural dissolved organic carbon), as compared with bacteria from conventional drinking water. The results showed that membrane filtration pre-treatment increased (140-320%) the BGP of remineralized RO permeate despite the extensive soaking and flushing of filters (>350 h), whereas no effect was observed on the BGP of conventional drinking water owing to its high nutrient content. Pasteurization pre-treatment had insignificant effects on the BGP of both water types. Remineralized RO permeate bacteria showed limitations in utilizing complex organic carbon compared with bacteria from conventional drinking water. In conclusion, the BGP bioassay for ultra-low nutrient water (e.g., remineralized RO permeate) should consider pasteurization pre-treatment. However, an inoculum comprising bacteria from remineralized RO permeate is not recommended as the bacterial consortium was shown to be limited in terms of the compounds they could utilize for growth.

6.
WIREs Water ; 7(2): e1413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194961

RESUMO

Several software tools are available that can assess the performance of nonrevenue water (NRW) in water distribution networks and plan for reduction measures. Of the 21 tools that have been reported in the literature, 12 are freely available. The creation of these many tools and different versions of each individual tool indicates the promising future of NRW software development. This review comprises 12 freely available tools for water balance establishment, NRW performance assessment, and NRW reduction planning. Most of the tools have been developed to establish standard annual water balances and recommended performance indicators (PIs) for the entire network. Some tools have been developed to intervene and reduce the leakage in a district metered area. Key features increasingly being included in NRW software include uncertainty analysis, recognition of supply intermittency, and accommodation of a guidance matrix and benchmarks. Leakage assessment is fully recognized, and leakage reduction analyses are increasingly growing in the software tools. However, much less attention has been paid to assessing and options for reducing apparent losses. Although a comprehensive NRW management tool for monitoring, planning, and intervention is not currently available, developing a comprehensive tool is worthwhile, in the form of one package or a kit of smaller tools. Toward this goal, the article provides insights and recommendations addressing topics of intermittency, normalization, multi-method assessment, planning for the reduction of apparent and real losses, and estimation of the economic level of water loss. This article is categorized under:Engineering Water > Planning WaterEngineering Water > Methods.

7.
Chemosphere ; 220: 176-184, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30583210

RESUMO

Alternative disinfection technologies may overcome some of the limitations of conventional treatment applied in swimming pools: chlorine-resistant pathogens (e.g. Cryptosporidium oocysts and Giardia cysts) and the formation of chlorinated disinfection byproducts. In this paper, results of full scale validation of an alternative disinfection technology UVOX Redox® (hereinafter referred to as UVOX) that combines ozonation and UV irradiation are presented. The performance was assessed in terms of microbial inactivation, disinfection byproduct formation and micropollutant removal. UVOX was able to achieve 1.4-2.7 log inactivation of Bacillus subtilis spores at water flows between 20 and 76 m³/h. Lower formation of trichloromethane and dichloroacetic acid was observed with UVOX followed by chlorination when compared to chlorination alone. However, due to the use of ozone and the presence of bromide in the pool water, the formation of trihalomethanes and haloacetic acids shifted to more brominated byproducts. Chlorine alone was able to remove the target micropollutants: acetaminophen, atenolol, caffeine, carbamazepine, estrone, estradiol, and venlafaxine (>97% removal) after 24 h, with the exception of ibuprofen (60% removal). The application of UVOX in chlorinated water enhanced the removal of ibuprofen. The application of UVOX could lower the usage of chlorine to the level that provides an adequate residual disinfection effect.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Cloro/química , Desinfecção/métodos , Ozônio , Piscinas , Raios Ultravioleta , Purificação da Água/métodos , Halogenação , Viabilidade Microbiana/efeitos da radiação , Oxirredução , Poluentes Químicos da Água/análise
8.
Water Res ; 145: 687-696, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30212807

RESUMO

Ensuring the biological stability of drinking water is essential for modern drinking water supply. To understand and manage the biological stability, it is critical that the bacterial growth in drinking water can be measured. Nowadays, advance treatment technologies, such as reverse osmosis (RO), are increasingly applied in drinking water purification where the produced water is characterized by low levels of nutrients and cell counts. The challenge is, therefore, how to measure the low bacterial growth potential (BGP) of such ultra-pure water using the available methods which were originally developed for conventionally treated drinking water. In this study, we proposed a protocol to assess BGP of ultra-pure drinking water produced by RO and post-treatment (including remineralization). Natural bacterial consortium from conventional drinking water was added to all water samples during this study to ensure the presence of a wide range of bacterial strains. The method development included developing an ultra-pure blank with high reproducibility to lower the detection limit of the BGP method (50 ±â€¯20 × 103 intact cells/mL) compared with conventional blanks such as bottled spring water, deep groundwater treated by aeration and slow sand filtrate of surface water supply. The ultra-low blank consists of RO permeate after adjusting its pH and essential mineral content under controlled laboratory conditions to ensure carbon limitation. Regarding the test protocol, inoculum concentrations of >10 × 103 intact cells/mL may have a significant contribution to the measured low levels of BGP. Pasteurization of water samples before measuring BGP is necessary to ensure reliable bacterial growth curves. The optimized method was used to assess BGP of ultra-pure drinking water produced by RO membranes and post-treatment (including remineralization), where the BGP has decreased more than 6-fold to a level of 90 ±â€¯20 × 103 intact cells/mL compared with conventionally treated water (630 ±â€¯70 × 103 intact cells/mL).


Assuntos
Água Potável , Purificação da Água , Filtração , Membranas Artificiais , Osmose , Reprodutibilidade dos Testes
9.
Int J Hyg Environ Health ; 221(8): 1107-1115, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30145117

RESUMO

Possible transmission pathways of fungi in indoor swimming pool facilities were assessed through fungal counting in different areas of the facilities and typing of the collected fungal isolates. Air, water and surface samples were collected from seven different indoor swimming pool facilities. Fungal species were identified based on their internal transcribed spacer (ITS) sequences. Maximum fungal concentrations of 6.2 CFU/cm2, 1.39 CFU/100 mL, and 202 CFU/m³ were found on surfaces, in water and air, respectively. In total, 458 isolates were obtained, belonging to 111 fungal species, of which 50 species were clinically relevant. Phialophora oxyspora (13.3%) and Trichosporon dohaense (5.0%) were the most frequently isolated species and were merely detected on floors, as were the dermatophytes, Trichophyton interdigitale and T. rubrum. Penicillium spp. and Aspergillus spp. were the dominant fungi in water and air. No typical patterns of fungal concentrations along the preferential pathways of pool visitors were observed, however, sites where pool visitors converge while moving from one room (e.g. dressing room) to another (e.g. shower room) and walking barefoot displayed the highest fungal concentrations thus posing the highest risk of contamination. The dispersal of fungi on floors is most likely facilitated by the pool visitors and cleaning tools. Clinically relevant fungi, including the ones rarely identified in nature, were widely detected on floors, in water and in air, as well as on cleaning tools and flexibeams. Preventive measures such as cleaning should minimize the prevalence of clinically relevant fungi in swimming pool facilities since these potentially pose health risks to those vulnerable for infections.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Poluição do Ar em Ambientes Fechados/análise , Fungos/isolamento & purificação , Micoses/transmissão , Piscinas , Poluentes da Água/isolamento & purificação , Microbiologia do Ar , DNA Fúngico/análise , Detergentes , Monitoramento Ambiental , Pisos e Cobertura de Pisos , Fungos/genética , Humanos , Materiais de Ensino , Microbiologia da Água
10.
Int J Hyg Environ Health ; 220(7): 1152-1160, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28716483

RESUMO

The density of fungal contamination and the fungal diversity in an indoor swimming pool facility were assessed. A total of 16 surface samples and 6 water samples were analysed by using a combination of different (semi-) selective culture media. Isolated fungal colonies were identified to the genus or species level by sequencing of the internal transcribed spacer (ITS). The highest fungal counts in water and on surfaces were in the recreational pool (17CFU/100mL) and on a flexibeam (5.8CFU/cm2), respectively as compared with low counts (<0.1CFU/cm2) on the diving platform, bench tops and walls. The 357 obtained isolates belonged to 79 species and species complexes, 42 of which known as clinically relevant. Phialophora oxyspora (13.7%) and Phoma spp. (12.3%) were the most frequently identified groups. We demonstrated that despite chlorine treatment and regular cleaning of surfaces both water and surfaces were commonly infested with fungi, including many clinically relevant species.


Assuntos
Fungos/isolamento & purificação , Piscinas , Microbiologia da Água , Análise de Variância , Contagem de Colônia Microbiana , Equipamentos e Provisões/microbiologia , Pisos e Cobertura de Pisos , Fungos/genética , Humanos , Países Baixos , Phialophora/isolamento & purificação , Análise de Sequência , Água
11.
Environ Sci Pollut Res Int ; 23(14): 14431-41, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27068900

RESUMO

The occurrence of 32 pharmaceuticals and 14 UV filters in swimming pools and spas was studied. Fifty-one water samples were collected from 17 pools located in sport centres and hotels in Catalonia, Spain. The samples were analysed by liquid chromatography-tandem mass spectrometry. The pharmaceuticals atenolol, carbamazepine, hydrochlorothiazide, metronidazole, ofloxacin, sulfamethoxazole, acetaminophen, ibuprofen, ketoprofen and phenazone were measured in water samples at concentrations higher than their limit of quantification (LOQ). The highest concentration of any individual pharmaceutical was measured for the diuretic hydrochlorothiazide (904 ng/L). The most frequently detected pharmaceutical was carbamazepine, as it was observed in more than half of all the water samples measured (53 %, 27/51). The UV filters at concentrations higher than LOQ in water samples were BP1, BP2, BP3, BP8, THB, 4DHB, 4MBC, OD-PABA, 1HBT, MeBT and DMeBT. The highest concentration of UV filter observed was 4MBC (69.3 ng/L) while the most frequent UV filters in the samples were 1HBT (59 %, 30/51). The results also showed that pharmaceuticals and UV filters were most frequently found in spas. Finally, from a water treatment technology perspective, the lowest occurrence of pharmaceuticals was in the pools applying sand filters followed by disinfection by sodium hypochlorite, while the lowest occurrence of UV filters was in the pools applying coagulation, sand filtration, UV and salt electrolysis.


Assuntos
Poluentes Químicos da Água/análise , Atenolol/análise , Banhos , Carbamazepina/análise , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida , Piscinas , Espectrometria de Massas em Tandem , Raios Ultravioleta , Purificação da Água/métodos
12.
Water Res ; 70: 300-12, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25543240

RESUMO

Transparent exopolymer particles (TEP) and their precursors produced by phyto-/bacterio-planktons in fresh and marine aquatic environments are increasingly considered as a major contributor to organic/particulate and biological fouling in micro-/ultra-filtration and reverse osmosis membrane (RO) systems. However, currently established methods which are based on Alcian blue (AB) staining and spectrophotometric techniques do not measure TEP-precursors and have the tendency to overestimate concentration in brackish/saline water samples due to interference of salinity on AB staining. Here we propose a new semi-quantitative method which allows measurement of both TEP and their colloidal precursors without the interference of salinity. TEP and their precursors are first retained on 10 kDa membrane, rinsed with ultra-pure water, and re-suspended in ultra-pure water by sonication and stained with AB, followed by exclusion of TEP-AB precipitates by filtration and absorbance measurement of residual AB. The concentration is then determined based on the reduction of AB absorbance due to reaction with acidic polysaccharides, blank correction and calibration with Xanthan gum standard. The extraction procedure allows concentration of TEP and their pre-cursors which makes it possible to analyse samples with a wide range of concentrations (down to <0.1 mg Xeq/L). This was demonstrated through application of the method for monitoring these compounds in algal cultures and a full-scale RO plant. The monitoring also revealed that concentrations of the colloidal precursors were substantially higher than the concentration of TEP themselves. In the RO plant, complete TEP removal was observed over the pre-treatment processes (coagulation-sedimentation-filtration and ultrafiltration) but the TEP precursors were not completely removed, emphasising the importance of measuring this colloidal component to better understand the role of TEP and acidic polysaccharides in RO membrane fouling.


Assuntos
Azul Alciano/química , Coloides/análise , Monitoramento Ambiental/métodos , Água Doce/análise , Polímeros/análise , Águas Salinas/análise , Incrustação Biológica , Polissacarídeos/química , Purificação da Água
13.
Water Res ; 69: 154-161, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25463936

RESUMO

The efficiency of manganese removal in conventional groundwater treatment consisting of aeration followed by rapid sand filtration, strongly depends on the ability of filter media to promote auto-catalytic adsorption of dissolved manganese and its subsequent oxidation. Earlier studies have shown that the compound responsible for the auto-catalytic activity in ripened filters is a manganese oxide called Birnessite. The aim of this study was to determine if the ripening of manganese removal filters and the formation of Birnessite on virgin sand is initiated biologically or physico-chemically. The ripening of virgin filter media in a pilot filter column fed by pre-treated manganese containing groundwater was studied for approximately 600 days. Samples of filter media were taken at regular time intervals, and the manganese oxides formed in the coating were analysed by Raman spectroscopy, Electron Paramagnetic Resonance (EPR) and Scanning Electron Microscopy (SEM). From the EPR analyses, it was established that the formation of Birnessite was most likely initiated via biological activity. With the progress of filter ripening and development of the coating, Birnessite formation became predominantly physico-chemical, although biological manganese oxidation continued to contribute to the overall manganese removal. The knowledge that manganese removal in conventional groundwater treatment is initiated biologically could be of help in reducing typically long ripening times by creating conditions that are favourable for the growth of manganese oxidizing bacteria.


Assuntos
Fenômenos Químicos , Filtração/instrumentação , Manganês/isolamento & purificação , Óxidos/química , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Microscopia Eletrônica de Varredura , Oxirredução , Análise Espectral Raman , Fatores de Tempo , Qualidade da Água
14.
Water Res ; 65: 245-56, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128660

RESUMO

In this work, dual-templated hierarchical porous carbons (HPCs), produced from a coupled ice-hard templating approach, are shown to be a highly effective solution to the commonly occurring problem of irreversible fouling of low-pressure membranes used for pre-treatment in wastewater reuse. For the first time, dual-templated HPCs, along with their respective counterparts - single-templated meso-porous carbon (MPCs) (without macropores) - are tested in terms of their fouling reduction capacity and ability to remove different effluent organic matter fractions present in wastewater and compared with a commercially available powdered activated carbon (PAC). The synthesized HPCs provided exceptional fouling abatement, a 4-fold higher fouling reduction as compared to the previously reported best performing commercial PAC and ∼2.5-fold better fouling reduction than their respective mesoporous counterpart. Thus, it is shown that not only mesoporosity, but macroporosity is also necessary to achieve high fouling reduction, thus emphasizing the need for dual templating. In the case of HPCs, the pre-deposition technique is also found to outperform the traditional sorbent-feed mixing approach, mainly in terms of removal of fouling components. Based on their superior performance, a high permeability (ultra-low-pressure) membrane consisting of the synthesized HPC pre-deposited on a large pore size membrane support (0.45 µm membrane), is shown to give excellent pre-treatment performance for wastewater reuse application.


Assuntos
Carbono/química , Filtração/métodos , Membranas Artificiais , Adsorção , Carvão Vegetal/química , Permeabilidade , Porosidade , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Purificação da Água/métodos
15.
Water Res ; 59: 283-94, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24810744

RESUMO

This paper investigated the effect of coagulation on fouling potential and removal of algal organic matter (AOM) in seawater ultrafiltration (UF) systems. AOM harvested from a strain of bloom forming marine diatom, Chaetoceros affinis, was coagulated with ferric chloride under different coagulation modes and conditions. The effect of coagulation on fouling potential was determined with the Modified Fouling Index-Ultrafiltration (MFI-UF). Removal of AOM was studied for three different modes of coagulation, namely, coagulation followed by sedimentation, coagulation followed by sedimentation and filtration through 0.45 µm, and inline coagulation followed by filtration through 150 kDa UF membranes. Liquid chromatography - organic carbon detection was used to determine the removal of AOM with particular emphasis on biopolymers. AOM (as biopolymers) had a high fouling potential as measured by MFI-UF, which strongly depended on filtration flux. Moreover, the developed cake/gel layer on the membrane was fairly compressible during filtration; manifested as higher fouling potential at higher filtration flux and non-linear development of pressure in filtration tests. Coagulation substantially reduced fouling potential and compressibility of the AOM cake/gel layer. The impact of coagulation was particularly significant at coagulant doses >1 mg Fe/L. Coagulation also substantially reduced the flux-dependency of AOM fouling potential, resulting in linear development of pressure in filtration tests at constant flux. This was attributed to adsorption of biopolymers on precipitated iron hydroxide and formation of Fe-biopolymer aggregates, such that the fouling characteristics of iron hydroxide precipitates prevailed and AOM fouling characteristics diminished. At low coagulant dose, inline coagulation/UF was more effective in removing AOM than the other two coagulation modes tested. At high coagulant dose where sweep floc conditions prevailed, AOM removal was considerably higher and controlled by coagulant dose rather than coagulation mode.


Assuntos
Incrustação Biológica , Diatomáceas/fisiologia , Água do Mar/química , Cloreto de Sódio/química , Fracionamento Químico/métodos , Precipitação Química , Ultrafiltração/métodos , Purificação da Água/métodos
16.
Water Sci Technol ; 68(1): 217-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23823558

RESUMO

The effect of hydraulic loading rate (HLR) and media type on the removal of bulk organic matter and nitrogen from primary effluent during soil aquifer treatment was investigated by conducting laboratory-scale soil column studies. Two soil columns packed with silica sand were operated at HLRs of 0.625 and 1.25 m/d, while a third column was packed with dune filtering material and operated at HLR of 1.25 m/d. Bulk organic matter was effectively removed by 47.5 ± 1.2% and 45.1 ± 1.2% in silica sand columns operated at 0.625 and 1.25 m/d, respectively and 57.3 ± 7.6% in dune filtering material column operated at 1.25 m/d. Ammonium-nitrogen reduction of 74.5 ± 18.0% was achieved at 0.625 m/d compared to 39.1 ± 4.3% at 1.25 m/d in silica sand columns, whereas 49.2 ± 5.2% ammonium-nitrogen reduction was attained at 1.25 m/d in the dune filtering material column. Ammonium-nitrogen reduction in the first 3 m was assumed to be dominated by nitrification process evidenced by corresponding increase in nitrate. Part of the ammonium-nitrogen was adsorbed onto the media, which was observed at higher rates between 3 and 5 m in silica sand column operated at HLR of 0.625 m/d and dune filtering material column operated at 1.25 m/d compared to 1.25 m/d silica.


Assuntos
Água Subterrânea , Nitrogênio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química
17.
Environ Sci Technol ; 44(17): 6642-8, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20704277

RESUMO

Membrane bioreactor (MBR) fouling is not only influenced by the soluble microbial products (SMP) concentration but by their characteristics. Experiments of separate producing biomass associated products (BAP) and utilization associated products (UAP) allowed the separation of BAP and UAP effects from sludge water (SW). Thus, filtration of individual SMP components and further characterization becomes possible. Unstirred cell filtration was used to study fouling mechanisms and liquid chromatography--organic carbon detection (LC-OCD) and fluorescence excitation--emission matrix (EEM) were used to characterize the foulant. Generally, the SMP exhibiting characteristics of higher molecular weight, greater hydrophilicity and a more reduced state showed a higher retention percentage. However, the higher retention does not always yield higher fouling effects. The UAP filtration showed the highest specific cake resistance and pore blocking resistance attributed to their higher percentage of low molecular weight molecules, although their retention percentage was lower than the SW and BAP filtration. The UAP produced in the cell proliferation phase appeared to have the highest fouling potential.


Assuntos
Bactérias/metabolismo , Incrustação Biológica , Biomassa , Reatores Biológicos/microbiologia , Membranas Artificiais , Cromatografia Líquida , Filtração , Fluorescência , Pressão , Padrões de Referência , Esgotos/análise , Esgotos/microbiologia , Solubilidade , Eliminação de Resíduos Líquidos
18.
Water Res ; 43(20): 5039-52, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19796785

RESUMO

The abundance of Transparent Exopolymer Particles (TEP) in surface waters has been unnoticed for many years until recently as a potential foulant in reverse osmosis systems. Recent studies indicate that TEP may cause organic and biological fouling and may enhance particulate/colloidal fouling in reverse osmosis membranes. The presence of TEP was measured in the raw water, the pre-treatment processes and reverse osmosis (RO) systems of 6 integrated membrane installations. A spectrophotometric method was used to measure TEP in the particulate size range (>0.40microm) and was extended to measure TEP in the colloidal size range (0.05-0.40microm). Ultrafiltration pre-treatment applied in 4 plants, totally removed particulate TEP while microfiltration systems (2 plants) and coagulation/sedimentation/rapid sand filtration systems (3 plants) partially removed this fraction. None of the pre-treatment systems investigated totally removed colloidal TEP. Biopolymer analysis using LC-OCD showed consistency between colloidal TEP and polysaccharide removal by UF pre-treatment and further verified the presence of TEP in the RO feedwater. TEP deposition in the RO system was determined after measuring total TEP concentrations in the RO feed and concentrate. The TEP deposition factors and specific deposition rates indicate that TEP accumulation had occurred in all plants investigated. This observation was verified by an autopsy of RO modules from two RO plants. Further improvement and verification of the (modified) TEP method, in particular the calibration, is necessary so that it can be employed to investigate the role of TEP in the fouling of RO systems.


Assuntos
Biopolímeros/análise , Filtração/métodos , Poluentes da Água/análise , Cromatografia Líquida , Monitoramento Ambiental , Água Doce/química , Osmose , Polissacarídeos/química , Água do Mar/química , Eliminação de Resíduos Líquidos
19.
Water Environ Res ; 81(4): 432-40, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19445333

RESUMO

Activated sludge models (ASM) have been developed and largely applied in conventional activated sludge (CAS) systems. The applicability of ASM to model membrane bioreactors (MBR) and the differences in modeling approaches have not been studied in detail. A laboratory-scale MBR was modeled using ASM2d. It was found that the ASM2d model structure can still be used for MBR modeling. There are significant differences related to ASM modeling. First, a lower maximum specific growth rate for MBR nitrifiers was estimated. Independent experiments demonstrated that this might be attributed to the inhibition effect of soluble microbial products (SMP) at elevated concentration. Second, a greater biomass affinity to oxygen and ammonium was found, which was probably related to smaller MBR sludge flocs. Finally, the membrane throughput during membrane backwashing/relaxation can be normalized and the membrane can be modeled as a continuous flow-through point separator. This simplicity has only a minor effect on ASM simulation results; however, it significantly improved simulation speed.


Assuntos
Reatores Biológicos , Membranas Artificiais , Modelos Teóricos , Esgotos , Calibragem
20.
Water Res ; 42(20): 4955-64, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18995881

RESUMO

MBR biochemical conditions have an effect on membrane fouling and SMP have been attributed to be the main MBR foulant. Thus, predicting the SMP concentration is essential for understanding and controlling MBR fouling. However, existing SMP models are mostly too complex and over-parameterized, resulting in inadequate or absent parameter estimation and validation. This study extends the existing activated sludge model No. 2d (ASM2d) to ASM2dSMP with introduction of only 4 additional SMP-related parameters. Dynamic batch experimental results were used for SMP parameter estimation leading to reasonable parameter confidence intervals. Finally, the ASM2dSMP model was used to predict the impact of operational parameters on SMP concentration. It would found that solid retention time (SRT) is the key parameter controlling the SMP concentration. A lower SRT increased the utilization associated products (UAP) concentration, but decreased the biomass associated products (BAP) concentration and vice versa. A SRT resulting in minimum total SMP concentration can be predicted, and is found to be a relatively low value in the MBR. If MBRs operate under dynamic conditions and biological nutrient removal is required, a moderate SRT condition should be applied.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...