Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 47(10-11): 889-906, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34415498

RESUMO

How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO2, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (Diabrotica balteata), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.

2.
Curr Opin Insect Sci ; 44: 72-81, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33866041

RESUMO

Entomopathogenic nematodes (EPNs) are obligate parasites that infect a broad range of insect species. Host-seeking is a crucial step for EPN infection success and survival. Yet, the identity and ecological functions of chemicals involved in host-seeking by EPNs remain overlooked. In this review, we report known CO2, plant-derived and insect-derived cues shaping EPN host-seeking and recognition. Despite species-specific response to environmental cues, we highlight a hierarchical integration of chemicals by EPNs. We further emphasize the impact of EPN selection pressure, age, and experience on their responsiveness to infochemicals. Finally, we feature that EPN chemical ecology can translate into powerful sustainable strategies to control insect herbivores in agriculture.


Assuntos
Comportamento de Busca por Hospedeiro/fisiologia , Insetos/química , Nematoides/fisiologia , Compostos Orgânicos Voláteis , Animais , Dióxido de Carbono , Sinais (Psicologia) , Ecossistema , Controle Biológico de Vetores , Microbiologia do Solo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...