Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 10(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375293

RESUMO

Tomatoes are consumed worldwide as fresh vegetables because of their high contents of essential nutrients and antioxidant-rich phytochemicals. Tomatoes contain minerals, vitamins, proteins, essential amino acids (leucine, threonine, valine, histidine, lysine, arginine), monounsaturated fatty acids (linoleic and linolenic acids), carotenoids (lycopene and ß-carotenoids) and phytosterols (ß-sitosterol, campesterol and stigmasterol). Lycopene is the main dietary carotenoid in tomato and tomato-based food products and lycopene consumption by humans has been reported to protect against cancer, cardiovascular diseases, cognitive function and osteoporosis. Among the phenolic compounds present in tomato, quercetin, kaempferol, naringenin, caffeic acid and lutein are the most common. Many of these compounds have antioxidant activities and are effective in protecting the human body against various oxidative stress-related diseases. Dietary tomatoes increase the body's level of antioxidants, trapping reactive oxygen species and reducing oxidative damage to important biomolecules such as membrane lipids, enzymatic proteins and DNA, thereby ameliorating oxidative stress. We reviewed the nutritional and phytochemical compositions of tomatoes. In addition, the impacts of the constituents on human health, particularly in ameliorating some degenerative diseases, are also discussed.

2.
Foods ; 9(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126433

RESUMO

Diabetes is a chronic metabolic disorder triggered by disturbances in carbohydrate, protein, and lipid metabolisms, where either reduced secretion or sensitivity of insulin is observed coupled with poor glucose control. Date palm fruits are one of the fruits reported to have good potential in diabetes treatment due to its presence of polyphenols exerting strong antioxidant activities. Other possible mechanisms of action include the polyphenolic compounds, which can inhibit enzymes like α-amylase and α-glucosidase. Flavonoids in dates can stimulate ß-cells by increasing the number of islets and ß-cells, recovering endocrine pancreatic tissues, reducing ß-cell apoptosis, activating insulin receptors following the increase in insulin secretion, in addition to improving diabetes-induced complications. In this review, the in vitro, in vivo, and human study-based evidence of date palm as an anti-diabetic fruit is summarised.

3.
Nat Prod Res ; : 1-5, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32713195

RESUMO

Two compounds (7-O-methylmearnsitrin (7-OM) and roseoside A (RA) were identified and characterized from the leaves of Leea aequata (L. aequata) L. The cytotoxicity of 7-OM and RA on HeLa cells was performed using MTT. The 7-OM and RA showed significant inhibition of HeLa cell proliferation with an IC50 of 22 and 20 µg/mL, respectively when compared with the standard vincristin sulphate (VS) (IC50 of 15 µg/mL). Moreover, the 7-OM and RA significantly inhibit other cancer cells (HEK-293, H228, and H3122) when compared with the VS and the cytotoxic activity of the compounds might show through the induction of apoptosis. Strikingly, annexin-V and PI signals could barely be detected in control cells, while strong fluorescence densities were observed in response to treatment indicating that these compounds have capacity to induce HeLa cell apoptosis. Our results suggest that the anticancer activity of 7-OM and RA was due to the induction of apoptosis.

4.
J Toxicol ; 2019: 2529569, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281355

RESUMO

The aim of this study was to investigate the antioxidant potentials, subacute toxicity, and beneficiary effects of methanolic extract of pomelo (Citrus grandis L. Osbeck) in rats. Long Evans rats were divided into four groups of eight animals each. The rats were orally treated with three doses of pomelo (250, 500, and 1000 mg/kg) once daily for 21 days. Pomelo extract contained high concentrations of polyphenols, flavonoids, and ascorbic acid while exhibiting high 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power values. There was no significant change in the body weight, percentage water content, and relative organ weight at any administered doses. In addition, no significant alterations in the hematological parameters were also observed. However, rats which received 1000 mg/kg dose had a significant reduction in some serum parameters, including alanine transaminase (15.29%), alkaline phosphatase (2.5%), lactate dehydrogenase (15.5%), γ-glutamyltransferase (20%), creatinine (14.47%), urea (18.50%), uric acid (27.14%), total cholesterol (5.78%), triglyceride (21.44%), low-density lipoprotein cholesterol (40.74%), glucose (2.48%), and all atherogenic indices including cardiac risk ratio (24.30%), Castelli's risk index-2 (45.71%), atherogenic coefficient (42%), and atherogenic index of plasma (25%) compared to control. In addition, the highest dose (1000 mg/kg) caused a significant increase in iron (12.07%) and high-density lipoprotein cholesterol (8.87%) levels. Histopathological findings of the vital organs did not indicate any pathological changes indicating that pomelo is nontoxic, safe, and serves as an important source of natural antioxidants. In addition, the fruit extract has the potential to ameliorate hepato- and nephrotoxicities and cardiovascular diseases as well as iron deficiency anemia.

5.
Chem Res Toxicol ; 32(8): 1619-1629, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31334637

RESUMO

The aim of the present study was to evaluate the protective effect of Syzygium cymosum leaf methanol extract (SCL) against carbofuran (CF)-induced hepatotoxicity in Sprague-Dawley rats, along with the identification and quantification of polyphenolic composition by high-performance liquid chromatography (HPLC). Results revealed the presence of alkaloids, tannins, and flavonoids in SCL. Similarly, HPLC analysis suggests that SCL contains some known important antioxidants, such as rutin, benzoic acid, and salicylic acid that could be responsible for the hepatoprotective activity of the extract. In CF-exposed rats, significant hematological alterations along with histological changes were marked by the presence of necrosis, congestion, and inflammation. CF-intoxication also showed an increase in lipid peroxidation and decrease in cellular antioxidant enzymes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) levels in rats compared with the control group. Furthermore, coadministration of SCL significantly ameliorated the abnormalities and improved the cellular arrangement in experimental animals. SCL also reversed the alteration of hematological and biochemical parameters and brought them back to normal levels as compared to the control group. In conclusion, S. cymosum may be one of the best sources of natural antioxidant compounds that can be used in the treatment of oxidative stress and stress-related diseases and disorders.


Assuntos
Antioxidantes/farmacologia , Carbofurano/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Eritrócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Substâncias Protetoras/farmacologia , Syzygium/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Ratos , Ratos Sprague-Dawley
6.
Artigo em Inglês | MEDLINE | ID: mdl-29861774

RESUMO

The current study aimed to investigate the ameliorative effects of two types of mushrooms, Ganoderma lucidum (GL) and Auricularia polytricha (AP), against carbofuran- (CF) induced toxicity in rats. Male Wistar rats (n = 42) were divided into six equal groups. The rats in the negative control group received oral administration of CF at 1 mg/kg with the normal diet for 28 days. The treatment groups received oral administration of ethanolic extract of GL or AP at 100 mg/kg followed by coadministration of CF at 1 mg/kg with the normal diet for the same experimental period, respectively. In the CF alone treated group, there were significant decreases in the erythrocytic and thrombocytic indices but increases in the concentrations of the total leukocytes, including the agranulocytes. A significant increase in all of the liver function biomarkers except albumin, in lipid profiles except high-density lipoprotein, and in the kidney function markers occurred in the negative control group compared to the rats of the normal control and positive control groups. The coadministration of mushroom extracts significantly ameliorated the toxic effects of the CF. The GL mushroom extract was more efficacious than that of the AP mushroom, possibly due to the presence of high levels of phenolic compounds and other antioxidants in the GL mushroom.

7.
Chem Cent J ; 12(1): 35, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29619623

RESUMO

An organic compound known as 5-hydroxymethylfurfural (HMF) is formed from reducing sugars in honey and various processed foods in acidic environments when they are heated through the Maillard reaction. In addition to processing, storage conditions affect the formation HMF, and HMF has become a suitable indicator of honey quality. HMF is easily absorbed from food through the gastrointestinal tract and, upon being metabolized into different derivatives, is excreted via urine. In addition to exerting detrimental effects (mutagenic, genotoxic, organotoxic and enzyme inhibitory), HMF, which is converted to a non-excretable, genotoxic compound called 5-sulfoxymethylfurfural, is beneficial to human health by providing antioxidative, anti-allergic, anti-inflammatory, anti-hypoxic, anti-sickling, and anti-hyperuricemic effects. Therefore, HMF is a neo-forming contaminant that draws great attention from scientists. This review compiles updated information regarding HMF formation, detection procedures, mitigation strategies and effects of HMF on honey bees and human health.

8.
Artigo em Inglês | MEDLINE | ID: mdl-29234381

RESUMO

The antihyperglycemic, antidiabetic, and antioxidant potentials of the methanolic extract of Garcinia pedunculata (GP) fruit in rats were investigated. The acute antihyperglycemic effect of different doses of GP was studied in normal male Wistar rats. Diabetes was induced by streptozotocin (STZ) injection in another cohort of male Wistar rats and they showed significantly higher blood glucose and glycated hemoglobin (HbA1c) levels, altered lipid profiles, and lower insulin levels compared to nondiabetic control animals. There were increased lipid peroxidation and reduced levels of cellular antioxidant enzymes in different tissues of diabetic rats. However, oral administration of GP extracts, especially the highest dose (1000 mg/kg), significantly ameliorated hyperglycemia (42%); elevated insulin levels (165%); decreased HbA1c (29.4%); restored lipid levels (reduction in TG by 25%, TC by 15%, and LDL-C by 75% and increase in HDL-C by 4%), liver and renal function markers, and lipid peroxidation (reduction by 52% in the liver, 39% in the kidney, 44% in the heart, and 46% in the pancreas); and stimulated tissue antioxidant enzymes to near normalcy. Overall, the findings suggest that GP fruit is effective against hyperglycemia and could be used in the treatment of diabetes and its complications and other oxidative stress-mediated pathological conditions.

9.
Pharmacol Rep ; 69(6): 1194-1205, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29128800

RESUMO

Honey contains many active constituents and antioxidants such as polyphenols. Polyphenols are phytochemicals, a generic term for the several thousand plant-based molecules with antioxidant properties. Many in vitro studies in human cell cultures as well as many animal studies confirm the protective effect of polyphenols on a number of diseases such as cardiovascular diseases (CVD), diabetes, cancer, neurodegenerative diseases, pulmonary diseases, liver diseases and so on. Nevertheless, it is challenging to identify the specific biological mechanism underlying individual polyphenols and to determine how polyphenols impact human health. To date, several studies have attempted to elucidate the molecular pathway for specific polyphenols acting against particular diseases. In this review, we report on the various polyphenols present in different types of honey according to their classification, source, and specific functions and discuss several of the honey polyphenols with the most therapeutic potential to exert an effect on the various pathologies of some major diseases including CVD, diabetes, cancer, and neurodegenerative diseases.


Assuntos
Antioxidantes/farmacologia , Mel , Polifenóis/farmacologia , Animais , Antioxidantes/isolamento & purificação , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus/prevenção & controle , Humanos , Neoplasias/prevenção & controle , Doenças Neurodegenerativas/prevenção & controle , Polifenóis/isolamento & purificação
10.
Pharm Biol ; 55(1): 1937-1945, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28675957

RESUMO

CONTEXT: Turmeric (Curcuma longa L. [Zingiberaceae]) is used in the treatment of a variety of conditions including pesticide-induced toxicity. OBJECTIVE: The study reports the antioxidant properties and the protective effects of turmeric against carbofuran (CF)-induced toxicity in rats. MATERIALS AND METHODS: The antioxidant potential was determined by using free radicals scavenging activity and ferric reducing antioxidant power values. Male Wistar rats were randomly divided into four groups, designated as control, turmeric (100 mg/kg/day), CF (1 mg/kg/day) and turmeric (100 mg/kg/day) + CF (1 mg/kg/day) treatments. All of the doses were administered orally for 28 consecutive days. The biological activity of the turmeric and CF was determined by using several standard biochemical methods. RESULTS: Turmeric contains high concentrations of polyphenols (8.97 ± 0.15 g GAEs), flavonoids (5.46 ± 0.29 g CEs), ascorbic acid (0.06 ± 0.00 mg AEs) and FRAP value (1972.66 ± 104.78 µM Fe2+) per 100 g of sample. Oral administration of CF caused significant changes in some of the blood indices, such as, mean corpuscular volume, corpuscular hemoglobin, white blood cell, platelet distribution width and induced severe hepatic injuries associated with oxidative stress, as observed by the significantly higher lipid peroxidation (LPO) levels when compared to control, while the activities of cellular antioxidant enzymes (including superoxide dismutase and glutathione peroxidase) were significantly suppressed in the liver tissue. DISCUSSION AND CONCLUSION: Turmeric supplementation could protect against CF-induced hematological perturbations and hepatic injuries in rats, plausibly by the up-regulation of antioxidant enzymes and inhibition of LPO to confer the protective effect.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Carbofurano/toxicidade , Curcuma , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Células Sanguíneas/metabolismo , Células Sanguíneas/patologia , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Extratos Vegetais/isolamento & purificação , Distribuição Aleatória , Ratos , Ratos Wistar
11.
Comput Biol Chem ; 68: 175-185, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28359874

RESUMO

Polymorphisms of the ADIPOR2 gene are frequently linked to a higher risk of developing diseases including obesity, type 2 diabetes and cardiovascular diseases. Though mutations of the ADIPOR2 gene are detrimental, there is a lack of comprehensive in silico analyses of the functional and structural impacts at the protein level. Considering the involvement of ADIPOR2 in glucose uptake and fatty acid oxidation, an in silico functional analysis was conducted to explore the possible association between genetic mutations and phenotypic variations. A genomic analysis of 82 nonsynonymous SNPs in ADIPOR2 was initiated using SIFT followed by the SNAP2, nsSNPAnalyzer, PolyPhen-2, SNPs&GO, FATHMM and PROVEAN servers. A total of 10 mutations (R126W, L160Q, L195P, F201S, L235R, L235P, L256R, Y328H, E334K and Q349H) were predicted to have deleterious effects on the ADIPOR2 protein and were therefore selected for further analysis. Theoretical models of the variants were generated by comparative modeling via MODELLER 9.16. A protein structural analysis of these amino acid variants was performed using SNPeffect, I-Mutant, ConSurf, Swiss-PDB Viewer and NetSurfP to explore their solvent accessibility, molecular dynamics and energy minimization calculations. In addition, FTSite was used to predict the ligand binding sites, while NetGlycate, NetPhos2.0, UbPerd and SUMOplot were used to predict post-translational modification sites. All of the variants showed increased free energy, though F201S exhibited the highest energy increase. The root mean square deviation values of the modeled mutants strongly indicated likely pathogenicity. Remarkably, three binding sites were detected on ADIPOR2, and two mutations at positions 328 and 201 were found in the first and second binding pockets, respectively. Interestingly, no mutations were found at the post-translational modification sites. These genetic variants can provide a better understanding of the wide range of disease susceptibility associated with ADIPOR2 and aid the development of new molecular diagnostic markers for these diseases. The findings may also facilitate the development of novel therapeutic elements for associated diseases.


Assuntos
Biologia Computacional , Simulação de Dinâmica Molecular , Polimorfismo de Nucleotídeo Único/genética , Receptores de Adiponectina/genética , Sítios de Ligação , Simulação por Computador , Humanos , Mutação
12.
Artigo em Inglês | MEDLINE | ID: mdl-28243309

RESUMO

This study was undertaken to investigate the toxicological profile of a methanolic extract of Garcinia pedunculata fruit in rats by conducting hematological, biochemical, and histopathological examinations. Long Evans rats were divided into four groups, each with 6 animals, and were treated with three oral doses (250, 500, and 1000 mg/kg) once daily for 21 days. The extract did not cause significant changes in body and relative organ weight, percent water content, or hematological parameters at any administered doses. However, a significant dose-dependent positive effect in serum lipid profile and all atherogenic indices including the cardiac risk ratio, Castelli's risk index-2, and the atherogenic coefficient were observed. Significant increases in the levels of iron and decreases in serum alkaline phosphatase, alanine transaminase, and lactate dehydrogenase activities and the levels of serum glucose were noted when the extract was administered at the highest dose (1000 mg/kg). Histopathological examination of the target tissues further confirmed that the extract was safe and had no observed toxicological features. Our study indicates that G. pedunculata fruit is nontoxic, has the potential to be effective against atherosclerosis, and may be used as a hepatoprotectant. The fruit extract is also beneficial to those with iron deficiency and hyperglycemia.

13.
Artigo em Inglês | MEDLINE | ID: mdl-28261310

RESUMO

Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

14.
Curr Top Med Chem ; 17(12): 1408-1428, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28049401

RESUMO

Alzheimer's disease (AD), which largely affects the elderly, has become a global burden. Patients with AD have both short- and long-term memory impairments. The neuronal loss in AD occurs due to abnormally folded amyloid beta proteins and aggregation of hyperphosphorylated tau proteins in the brain. Eventually, amyloid plaques and neurofibrillary tangles are formed, which subsequently disintegrate the neuronal transport system. There are several factors which are involved in AD pathogenesis, including oxidative stress, inflammation and the presence of metal ions. The modern therapies utilized for AD treatment have many adverse effects, driving the quest for more safe and effective medications. Many dietary components, including different types of fruits, vegetables, spices, and marine products as well as a Mediterranean diet, are a good source of antioxidants and have anti-inflammatory properties, with many showing substantial potential against AD pathogenesis. In this review, we discuss the potential of these foods for treating AD and opportunities for developing disease-targeted drugs from active compounds extracted from natural dietary products.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Doença de Alzheimer/metabolismo , Antioxidantes/efeitos adversos , Antioxidantes/isolamento & purificação , Produtos Biológicos/efeitos adversos , Produtos Biológicos/isolamento & purificação , Humanos
15.
Curr Drug Metab ; 18(1): 50-61, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27396919

RESUMO

Parkinson's disease (PD) is characterized by neurodegeneration and a progressive functional impairment of the midbrain nigral dopaminergic neurons. The cause remains unknown; however, several pathological processes and central factors, such as protein aggregation, mitochondrial dysfunction, iron accumulation, neuroinflammation and oxidative stress, have been reported. The current treatment method primarily targets symptoms by using anti-Parkinson drugs such as levodopa, carbidopa, dopamine (DA) agonists, monoamine oxidase type B inhibitors and anticholinergics to replace DA. When drug therapy is not satisfactory, surgical treatments are recommended. Unfortunately, the existing conventional strategies that target PD are associated with numerous side effects and possess an economic burden. Therefore, novel therapeutic approaches that regulate the pathways leading to neuronal death and dysfunction are necessary. For many years, nature has provided the primary resource for the discovery of potential therapeutic agents. Remarkably, many natural products from medicinal plants, fruits and vegetables have been demonstrated to be efficacious anti-Parkinson agents. These products possess neuroprotective properties as a result of not only their wellrecognized anti-oxidative and anti-inflammatory activities but also their inhibitory roles regarding iron accumulation, protein misfolding and the maintenance of proteasomal degradation, as well as mitochondrial homeostasis. The aim of this review is to report the available anti-Parkinson agents based on natural products and delineate their therapeutic actions, which act on various pathways. Overall, this review emphasizes the types of natural products that are potential future resources in the treatment of PD as novel regimens or supplementary agents.


Assuntos
Produtos Biológicos/uso terapêutico , Descoberta de Drogas , Doença de Parkinson/tratamento farmacológico , Humanos
16.
Molecules ; 22(1)2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28035985

RESUMO

Bee venom (BV) is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2), phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.


Assuntos
Fosfatase Ácida/metabolismo , Venenos de Abelha/metabolismo , Venenos de Abelha/farmacologia , Hialuronoglucosaminidase/metabolismo , Fosfolipases A2/metabolismo , alfa-Glucosidases/metabolismo , Analgésicos/farmacologia , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Humanos , Medicina Tradicional , Protetores contra Radiação/farmacologia
17.
Oxid Med Cell Longev ; 2016: 5137431, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27721914

RESUMO

Cumulatively, degenerative disease is one of the most fatal groups of diseases, and it contributes to the mortality and poor quality of life in the world while increasing the economic burden of the sufferers. Oxidative stress and inflammation are the major pathogenic causes of degenerative diseases such as rheumatoid arthritis (RA), diabetes mellitus (DM), and cardiovascular disease (CVD). Although a number of synthetic medications are used to treat these diseases, none of the current regimens are completely safe. Phytochemicals (polyphenols, carotenoids, anthocyanins, alkaloids, glycosides, saponins, and terpenes) from natural products such as dietary fruits, vegetables, and spices are potential sources of alternative medications to attenuate the oxidative stress and inflammation associated with degenerative diseases. Based on in vitro, in vivo, and clinical trials, some of these active compounds have shown good promise for development into novel agents for treating RA, DM, and CVD by targeting oxidative stress and inflammation. In this review, phytochemicals from natural products with the potential of ameliorating degenerative disease involving the bone, metabolism, and the heart are described.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Artrite Reumatoide/terapia , Doenças Cardiovasculares/terapia , Diabetes Mellitus/terapia , Dieta Saudável , Suplementos Nutricionais , Inflamação/terapia , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/administração & dosagem , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Antirreumáticos/administração & dosagem , Artrite Reumatoide/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/mortalidade , Diabetes Mellitus/metabolismo , Diabetes Mellitus/mortalidade , Humanos , Hipoglicemiantes/administração & dosagem , Inflamação/metabolismo , Inflamação/mortalidade , Compostos Fitoquímicos/isolamento & purificação
18.
Biomed Res Int ; 2016: 6437641, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27294126

RESUMO

The present study was designed to investigate the cardioprotective effects of Sundarban honey (SH) in rats with isoproterenol- (ISO-) induced myocardial infarction. Adult male Wistar Albino rats were pretreated with Sundarban honey (5 g/kg) daily for a period of 6 weeks. After the treatment period, ISO (85 mg/kg) was subcutaneously injected into the rats at 24 h intervals for 2 days. ISO-induced myocardial damage was indicated by increased serum cardiac specific troponin I levels and cardiac marker enzyme activities including creatine kinase-MB, lactate dehydrogenase, aspartate transaminase, and alanine transaminase. Significant increases in serum total cholesterol, triglycerides, and low-density lipoprotein-cholesterol levels were also observed, along with a reduction in the serum high-density lipoprotein-cholesterol level. In addition to these diagnostic markers, the levels of lipid peroxide products were significantly increased. The activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase were significantly decreased in the hearts after ISO-induced myocardial infarction. However, pretreatment of ischemic rats with Sundarban honey brought the biochemical parameters to near normalcy, indicating the protective effect of Sundarban honey against ISO-induced ischemia in rats. Histopathological findings of the heart tissues further confirmed the biochemical findings, indicating that Sundarban honey confers protection against ISO-induced oxidative stress in the myocardium.


Assuntos
Mel , Isoproterenol/efeitos adversos , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/prevenção & controle , Alanina Transaminase/metabolismo , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/metabolismo , Peso Corporal , Creatina Quinase Forma MB/metabolismo , Radicais Livres , L-Lactato Desidrogenase/metabolismo , Masculino , Miocárdio/enzimologia , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Troponina I/metabolismo
19.
Biomed Res Int ; 2016: 9142190, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27294143

RESUMO

Despite the reported association of adiponectin receptor 1 (ADIPOR1) gene mutations with vulnerability to several human metabolic diseases, there is lack of computational analysis on the functional and structural impacts of single nucleotide polymorphisms (SNPs) of the human ADIPOR1 at protein level. Therefore, sequence- and structure-based computational tools were employed in this study to functionally and structurally characterize the coding nsSNPs of ADIPOR1 gene listed in the dbSNP database. Our in silico analysis by SIFT, nsSNPAnalyzer, PolyPhen-2, Fathmm, I-Mutant 2.0, SNPs&GO, PhD-SNP, PANTHER, and SNPeffect tools identified the nsSNPs with distorting functional impacts, namely, rs765425383 (A348G), rs752071352 (H341Y), rs759555652 (R324L), rs200326086 (L224F), and rs766267373 (L143P) from 74 nsSNPs of ADIPOR1 gene. Finally the aforementioned five deleterious nsSNPs were introduced using Swiss-PDB Viewer package within the X-ray crystal structure of ADIPOR1 protein, and changes in free energy for these mutations were computed. Although increased free energy was observed for all the mutants, the nsSNP H341Y caused the highest energy increase amongst all. RMSD and TM scores predicted that mutants were structurally similar to wild type protein. Our analyses suggested that the aforementioned variants especially H341Y could directly or indirectly destabilize the amino acid interactions and hydrogen bonding networks of ADIPOR1.


Assuntos
Biologia Computacional/métodos , Polimorfismo de Nucleotídeo Único/genética , Receptores de Adiponectina/química , Receptores de Adiponectina/genética , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Sequência Conservada/genética , Evolução Molecular , Éxons/genética , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Proteínas Mutantes/química , Mutação/genética , Fenótipo , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Software , Termodinâmica
20.
Artigo em Inglês | MEDLINE | ID: mdl-27034701

RESUMO

Although Citrus macroptera (Rutaceae), an indigenous fruit in Bangladesh, has long been used in folk medicine, however, there is a lack of information concerning its protective effects against oxidative damage. The protective effects of an ethanol extract of Citrus macroptera (EECM) against acetaminophen-induced hepatotoxicity and nephrotoxicity were investigated in rats. Rats (treatment groups) were pretreated with EECM at doses of 250, 500, and 1000 mg/kg, respectively, orally for 30 days followed by acetaminophen administration. Silymarin (100 mg/kg) was administered as a standard drug over a similar treatment period. Our findings indicated that oral administration of acetaminophen induced severe hepatic and renal injuries associated with oxidative stress, as observed by 2-fold higher lipid peroxidation (TBARS) compared to control. Pretreatment with EECM prior to acetaminophen administration significantly improved all investigated biochemical parameters, that is, transaminase activities, alkaline phosphatase, lactate dehydrogenase, γ-glutamyl transferase activities and total bilirubin, total cholesterol, triglyceride and creatinine, urea, uric acid, sodium, potassium and chloride ions, and TBARS levels. These findings were confirmed by histopathological examinations. The improvement was prominent in the group that received 1000 mg/kg EECM. These findings suggested that C. macroptera fruit could protect against acetaminophen-induced hepatonephrotoxicity, which might be via the inhibition of lipid peroxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...