Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36622618

RESUMO

Nanotechnology uses biological and non-biological materials to create new systems at the nanoscale level. In recent years, the use of silver nanomaterials has attracted worldwide attention thanks to their wide range of applications as catalysts in several environmental processes including the degradation of organic pollutants and medicinal biotechnology. This study reports the synthesis of silver nanoparticles (AgNPs) through different methods including the biogenic methods based on leaf extract of Conocarpus erectus and a bacterial strain Pseudomonas sp. as well as chemically based abiotic method and comparison of their dye degradation potential. The synthesis of AgNPs in all samples was confirmed by UV-visible spectroscopy peaks at 418-420 nm. Using scanning electrom microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray differaction (XRD), and X-ray photoelectron spectroscopy (XPS), the biologically synthesized AgNPs were characterized as spherical shape of material with capping proteins that were involved in the stabilization of nanoparticles (NPs). The biologically synthesized AgNPs showed higher degradation (< 90%) of dyes as compared to chemically synthesized NPs. A prominent reduction of total dissolved solids (TDS), electrical conductivity (EC), pH, and chemical oxygen demand (COD) in textile wastewater spiked with reactive black 5 and reactive red 120 was observed by biologically synthesized AgNPs. AgNPs synthesized by Conocarpus erectus and Pseudomonas sp. also showed better characteristic anticancer and antidiabetic activities as compared to chemically synthesized ones. The results of this study suggested that C. erectus and Pseudomonas sp. based AgNPs can be exploited as an eco-friendly and cost-efficient materials to treat the wastewater and potential other polluted environments as well as to serve the medicinal field.

2.
Front Genet ; 13: 988256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338987

RESUMO

The widespread impacts of projected global and regional climate change on rice yield have been investigated by different indirect approaches utilizing various simulation models. However, direct approaches to assess the impacts of climatic variabilities on rice growth and development may provide more reliable evidence to evaluate the effects of climate change on rice productivity. Climate change has substantially impacted rice production in the mid-high latitudes of China, especially in Northeast China (NEC). Climatic variabilities occurring in NEC since the 1970s have resulted in an obvious warming trend, which made this region one of the three major rice-growing regions in China. However, the projections of future climate change have indicated the likelihood of more abrupt and irregular climatic changes, posing threats to rice sustainability in this region. Hence, understanding the self-adaptability and identifying adjustive measures to climate variability in high latitudes has practical significance for establishing a sustainable rice system to sustain future food security in China. A well-managed field study under randomized complete block design (RCBD) was conducted in 2017 and 2018 at two study sites in Harbin and Qiqihar, located in Heilongjiang province in NEC. Four different cultivars were evaluated: Longdao-18, Longdao-21 (longer growth duration), Longjing-21, and Suijing-18 (shorter growth duration) to assess the inter-relationships among grain-filling parameters, grain yield and yield components, and grain quality attributes. To better compare the adaptability mechanisms between grain-filling and yield components, the filling phase was divided into three sub-phases (start, middle, and late). The current study evaluated the formation and accumulation of the assimilates in superior and inferior grains during grain-filling, mainly in the middle sub-phase, which accounted for 59.60% of the yield. The grain yields for Suijing-18, Longjing-21, Longdao-21, and Longdao-18 were 8.02%, 12.78%, 17.19%, and 20.53% higher in Harbin than those in Qiqihar, respectively in 2017, with a similar trend observed in 2018. At Harbin, a higher number of productive tillers was noticed in Suijing-18, with averages of 17 and 15 in 2017 and 2018, respectively. The grain-filling parameters of yield analysis showed that the filling duration in Harbin was conducive to increased yield but the low dry weight of inferior grains was a main factor limiting the yield in Qiqihar. The average protein content values in Harbin were significantly higher (8.54% and 9.13%) than those in Qiqihar (8.34% and 9.14%) in 2017 and 2018, respectively. The amylose content was significantly higher in Harbin (20.03% and 22.27%) than those in Qiqihar (14.44% and 14.67%) in 2017 and 2018, respectively. The chalkiness percentage was higher in Qiqihar, indicating that Harbin produced good quality rice. This study provides more direct evidence of the relative changes in rice grain yield due to changes in grain-filling associated with relative changes in environmental components. These self-adaptability mechanisms to climatic variability and the inter-relationships between grain-filling and grain yield underscore the urgent to investigate and explore measures to improve Japonica rice sustainability, with better adaptation to increasing climatic variabilities. These findings may also be a reference for other global rice regions at high latitudes in addressing the impacts of climate change on future rice sustainability.

3.
Front Plant Sci ; 13: 1005710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340333

RESUMO

Drought is one of the major environmental limitations in the crop production sector that has a great impact on food security worldwide. Coriander (Coriandrum sativum L.) is an herbaceous angiosperm of culinary significance and highly susceptible to rootzone dryness. Elucidating the drought-induced physio-chemical changes and the foliar-applied folic acid (FA; vitamin B9)-mediated stress tolerance mechanism of coriander has been found as a research hotspot under the progressing water scarcity challenges for agriculture. The significance of folic acid in ameliorating biochemical activities for the improved vegetative growth and performance of coriander under the mild stress (MS75), severe stress (SS50), and unstressed (US100) conditions was examined in this study during two consecutive seasons. The results revealed that the plants treated with 50 mM FA showed the highest plant fresh biomass, leaf fresh biomass, and shoot fresh biomass from bolting stage to seed filling stage under mild drought stress. In addition, total soluble sugars, total flavonoids content, and chlorophyll content showed significant results by the foliar application of FA, while total phenolic content showed non-significant results under MS75 and SS50. It was found that 50 mM of FA upregulated the activity of catalase, superoxide dismutase, and ascorbate peroxidase enzymes in MS75 and SS50 plants compared with untreated FA plants. Thus, FA treatment improved the overall biological yield and economic yield regardless of water deficit conditions. FA-accompanied plants showed a decline in drought susceptibility index, while it improved the drought tolerance efficiency, indicating this variety to become stress tolerant. The optimum harvest index, essential oil (EO) percentage, and oil yield were found in MS75 followed by SS50 in FA-supplemented plants. The gas chromatography-mass spectrometry analysis revealed a higher abundance of linalool as the major chemical constituent of EO, followed by α-terpeniol, terpinene, and p-Cymene in FA-treated SS50 plants. FA can be chosen as a shotgun tactic to improve drought tolerance in coriander by delimiting the drastic changes due to drought stress.

4.
Front Plant Sci ; 13: 1023723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340357

RESUMO

This research focused on cadmium (Cd), which negatively affects plant growth and auxin hemostasis. In plants, many processes are indirectly controlled through the expression of certain genes due to the secretion of bacterial auxin, as indole-3-acetic acid (IAA) acts as a reciprocal signaling molecule in plant-microbe interaction. The aim of current studies was to investigate responsible genes in rice for plant-microbe interaction and lateral root development due to the involvement of several metabolic pathways. Studies revealed that GH3-2 interacts with endogenous IAA in a homeostasis manner without directly providing IAA. In rice, indole-3-pyruvate decarboxylase (IPDC) transgenic lines showed a 40% increase in lateral roots. Auxin levels and YUCCA (auxin biosynthesis gene) expression were monitored in osaux1 mutant lines inoculated with Bacillus cereus exposed to Cd. The results showed an increase in root hairs (RHs) and lateral root density, changes in auxin levels, and expression of the YUCCA gene. B. cereus normalizes the oxidative stress caused by Cd due to the accumulation of O 2 - and H2O2 in osaux1 mutant lines. Furthermore, the inoculation of B. cereus increases DR5:GUS expression, indicating that bacterial species have a positive role in auxin regulation. Thus, the current study suggests that B. cereus and IPDC transgenic lines increase the RH development in rice by interacting with IAA synthetase genes in the host plant, alleviating Cd toxicity and enhancing plant defense mechanisms.

5.
Mol Genet Genomics ; 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36301366

RESUMO

Salinity severely affects crop yield by hindering nitrogen uptake and reducing plant growth. Plant growth-promoting bacteria (PGPB) are capable of providing cross-protection against biotic/abiotic stresses and facilitating plant growth. Genome-level knowledge of PGPB is necessary to translate the knowledge into a product as efficient biofertilizers and biocontrol agents. The current study aimed to isolate and characterize indigenous plant growth-promoting strains with the potential to promote plant growth under various stress conditions. In this regard, 72 bacterial strains were isolated from various saline-sodic soil/lakes; 19 exhibited multiple in vitro plant growth-promoting traits, including indole 3 acetic acid production, phosphate solubilization, siderophore synthesis, lytic enzymes production, biofilm formation, and antibacterial activities. To get an in-depth insight into genome composition and diversity, whole-genome sequence and genome mining of one promising Bacillus paralicheniformis strain ES-1 were performed. The strain ES-1 genome carries 12 biosynthetic gene clusters, at least six genomic islands, and four prophage regions. Genome mining identified plant growth-promoting conferring genes such as phosphate solubilization, nitrogen fixation, tryptophan production, siderophore, acetoin, butanediol, chitinase, hydrogen sulfate synthesis, chemotaxis, and motility. Comparative genome analysis indicates the region of genome plasticity which shapes the structure and function of B. paralicheniformis and plays a crucial role in habitat adaptation. The strain ES-1 has a relatively large accessory genome of 649 genes (~ 19%) and 180 unique genes. Overall, these results provide valuable insight into the bioactivity and genomic insight into B. paralicheniformis strain ES-1 with its potential use in sustainable agriculture.

6.
J Pharm Biomed Anal ; 221: 115043, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36155483

RESUMO

The current work reports the drug-mediated synthesis of silver nanoparticles (AgNPs) and their functionalization with ionic liquid (IL) for acetone determination. The rationale behind the selection of the Augmentin drug was the aromaticity in its structure and the functional groups attached. These properties are not only supposed to work in the synthesis of the nanoparticles but also enhance their electron density. The nanoparticles were further coated with 1-H-3-methylimidazolium acetate IL, having conductivity and aromaticity in their structure. The synthesized nanoparticles have been characterized by different techniques such as FTIR, XRD, SEM, and EDX. Colorimetric determination of acetone was done by using IL capped AgNPs with the assistance of NaCl solution and results were analyzed by UV-Vis spectrophotometry. Low-cost, stable eosin dye works as a substrate and is consumed resulting in a color change from brown to transparent. The IL capped AgNPs act as a reducing agent for the production of reduced radical form of acetone which act on the carboxylate moiety and bubble it out in the form of CO2. Different parameters such as (concentrations, loading of nanoparticles, time and pH, etc.) were optimized to get the best results of the proposed sensor. The sensor shows a wide linear range of (1 ×10-8-2.40 ×10-6 M), low limit of detection 2.66 × 10-9 M, and limit of quantification 8.86 × 10-9 M with an R2 value of 0.997. The proposed sensor has been successfully applied to diabetic patient's urine samples for acetone detection with a visible colorimetric change. It showed good sensitivity and selectivity towards acetone detection.


Assuntos
Líquidos Iônicos , Nanopartículas Metálicas , Acetona , Combinação Amoxicilina e Clavulanato de Potássio , Dióxido de Carbono , Colorimetria/métodos , Amarelo de Eosina-(YS) , Humanos , Nanopartículas Metálicas/química , Substâncias Redutoras , Prata/química , Cloreto de Sódio
7.
Front Biosci (Landmark Ed) ; 27(8): 251, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36042185

RESUMO

BACKGROUND: The plant hormones auxin affects most aspects of plant growth and development. The auxin transport and signaling are regulated by different factors that modulate plant morphogenesis and respond to external environments. The modulation of gene expression by Auxin Response Factors (ARFs) and inhibiting Auxin/Indole-3-Acetic Acid (Aux/IAA) proteins are involved in auxin signaling pathways. These components are encoded by gene families with numerous members in most flowering plants. METHODS: However, there is no genome-wide analysis of the expression profile and the structural and functional properties of the ARF and Aux/IAA gene families in soybean. Using various online tools to acquire of genomic and expression data, and analyzing them to differentiate the selected gene family's expression, interaction, and responses in plant growth and development. RESULTS: Here, we discovered 63 GmIAAs and 51 GmARFs in a genome-wide search for soybean and analyzed the genomic, sequential and structural properties of GmARFs and GmIAAs. All of the GmARFs found have the signature B3 DNA-binding (B3) and ARF (Aux rep) domains, with only 23 possessing the C-terminal PB1 (Phox and Bem1) domain (Aux/IAA), according to domain analysis. The number of exons in GmARFs and GmIAAs genes varies from two to sixteen, indicating that the gene structure of GmARFs and GmIAAs is highly variable. Based on phylogenetic analysis, the 51 GmARFs and 63 GmIAAs were classified into I-V and I-VII groups. The expression pattern of GmARFs and GmIAAs revealed that the GmARF expression is more specific to a particular part of the plant; for example, ARF 2, 7, and 11 are highly expressed in the root. In contrast, GmIAAs expression has occurred in various parts of the plants. The interaction of ARF with functional genes showed extensive interactions with genes involved in auxin transport which helps to control plant growth and development. Furthermore, we also elaborate on the DNA-protein interaction of ARFs by identifying the residues involved in DNA recognition. CONCLUSIONS: This study will improve our understanding of the auxin signaling system and its regulatory role in plant growth and development.


Assuntos
Proteínas de Plantas , Soja , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas , Soja/genética , Soja/metabolismo
8.
ACS Omega ; 7(30): 26983-26991, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35936421

RESUMO

Uric acid (UA) is a metabolic byproduct of purine nucleotides and is excreted as a urine component. Abnormalities in UA metabolism cause localized inflammation due to crystal deposition and can lead to various diseases. In the current study, we successfully fabricated a biosensor based on 1-H-3-methylimidazolium acetate (ionic liquid, IL)-capped nickel nanoparticles (NiNPs) for the detection of uric acid in test samples. The structures of IL-capped NiNPs and their precursors were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The IL-capped NiNPs possessed intrinsic peroxidase-like properties and displayed selective UA quenching after interacting with 3,3',5,5'-tetramethylbenzidine (TMB) solution. Different parameters such as pH, time, IL, TMB, and UA concentration were optimized to obtain the best results for the proposed sensor. The UA biosensor shows good responses in the linear range from 1 × 10-8 to 2.40 × 10-6 M, with a lower limit of detection of 1.30 × 10-7 M, a limit of quantification of 4.3 × 10-7 M, and an R 2 value of 0.9994. For the colorimetric detection of UA, the proposed sensor gave a short time response of 4 min at room temperature and pH 7.5. The proposed sensing probe detects UA in real serum samples and could be used as a selective sensor for UA in the real sample detection.

9.
Vaccines (Basel) ; 10(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35746487

RESUMO

The field of immunotherapy has undergone radical conceptual changes over the last decade. There are various examples of immunotherapy, including the use of monoclonal antibodies, cancer vaccines, tumor-infecting viruses, cytokines, adjuvants, and autologous T cells carrying chimeric antigen receptors (CARs) that can bind cancer-specific antigens known as adoptive immunotherapy. While a lot has been achieved in the field of T-cell immunotherapy, only a fraction of patients (20%) see lasting benefits from this mode of treatment, which is why there is a critical need to turn our attention to other immune cells. B cells have been shown to play both anti- and pro-tumorigenic roles in tumor tissue. In this review, we shed light on the dual nature of B cells in the tumor microenvironment. Furthermore, we discussed the different factors affecting the biology and function of B cells in tumors. In the third section, we described B-cell-based immunotherapies and their clinical applications and challenges. These current studies provide a springboard for carrying out future mechanistic studies to help us unleash the full potential of B cells in immunotherapy.

10.
Front Plant Sci ; 13: 867172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720587

RESUMO

Exogenous application of antioxidants can be helpful for plants to resist salinity, which can be a potentially simple, economical, and culturally feasible approach, compared with introgression and genetic engineering. Foliar spraying of alpha-tocopherol (α-tocopherol) is an approach to improve plant growth under salinity stress. Alpha-tocopherol acts as an antioxidant preventing salinity-induced cellular oxidation. This study was designed to investigate the negative effects of salinity (0 and 120mM NaCl) on linseed (Linum usitatissimum L.) and their alleviation by foliar spraying of α-tocopherol (0, 100, and 200mg L-1). Seeds of varieties "Chandni and Roshni" were grown in sand-filled plastic pots, laid in a completely randomized design in a factorial arrangement, and each treatment was replicated three times. Salinity significantly affected linseed morphology and yield by reducing shoot and root dry weights, photosynthetic pigment (Chl. a, Chl. b, total Chl., and carotenoids) contents, mineral ion (Ca2+, K+) uptake, and 100-seed weight. Concomitantly, salinity increased Na+, proline, soluble protein, peroxidase, catalase, and superoxide dismutase activities in both varieties. Conversely, the growth and yield of linseed varieties were significantly restored by foliar spraying of α-tocopherol under saline conditions, improving shoot and root dry matter accumulation, photosynthetic pigment, mineral ion, proline, soluble protein contents, peroxidase, catalase, superoxide dismutase activities, and 100-seed weight. Moreover, foliar spray of α-tocopherol alleviated the effects of salinity stress by reducing the Na+ concentration and enhancing K+ and Ca2+ uptake. The Chandni variety performed better than the Roshni, for all growth and physiological parameters studied. Foliar spray of α-tocopherol (200mg L-1) alleviated salinity effects by improving the antioxidant potential of linseed varieties, which ultimately restored growth and yield. Therefore, the use of α-tocopherol may enhance the productivity of linseed and other crops under saline soils.

11.
Microorganisms ; 10(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35744606

RESUMO

Plant-growth-promoting microorganisms are beneficial microbes that reside in the rhizosphere and roots of plants, direct their developmental process and induce systemic resistance [...].

12.
Nat Commun ; 13(1): 3148, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672305

RESUMO

Checkpoint blockade with Pembrolizumab, has demonstrated durable clinical responses in advanced non-small cell lung cancer, however, treatment is offset by the development of high-grade immune related adverse events (irAEs) in some patients. Here, we show that in these patients a deficient Breg checkpoint fails to limit self-reactive T cell enhanced activity and auto-antibody formation enabled by PD-1/PD-L1 blockade, leading to severe auto-inflammatory sequelae. Principally a failure of IL-10 producing regulatory B cells as demonstrated through functional ex vivo assays and deep phenotyping mass cytometric analysis, is a major and significant finding in patients who develop high-grade irAEs when undergoing treatment with anti-PD1/PD-L1 checkpoint blockade. There is currently a lack of biomarkers to identify a priori those patients at greatest risk of developing severe auto-inflammatory syndrome. Pre-therapy B cell profiling could provide an important tool to identify lung cancer patients at high risk of developing severe irAEs on checkpoint blockade.


Assuntos
Linfócitos B Reguladores , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptor de Morte Celular Programada 1/genética
13.
J Plant Physiol ; 275: 153740, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716656

RESUMO

Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.


Assuntos
Edição de Genes , Plantas , Cromatina , Epigênese Genética , Plantas/genética , Estresse Fisiológico/genética
14.
Saudi J Biol Sci ; 29(6): 103299, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35574282

RESUMO

Salinity affects plant growth, development, yield, and is a big challenge for wheat growth across the globe. Possible feasible solution is creation of salt-tolerant material, genetic variation is a criterion to developing genetically superior individuals. To assess the genetic variation for salt tolerance, nationally and internationally-derived 81 wheat genotypes were selected and evaluated in 0- and 150-mM salt in nutritional culture at seedling stage. Results indicate that salinity levels reveal significant (p ≤ 0.01) differences for fresh root weight (RW), shoot length (SL), fresh shoot weight (SW), total plant length (TL), total fresh weight (TW), root/shoot weight ratio (RSWR), root/shoot length ratio (RSLR), and relative growth rate for weight (RGR-Wt). While, there was no difference for root length (RL). Hierarchical Clustering and Pairwise correlation analysis showed TW, RGR-Wt, SL, SW, and RW were positively correlated among themselves, whereas RL had poor correlations with all the traits except TL and RSLR. Hence, selection of SL can improve the performance of other parameters. Based on PCA analysis, SW and RGR-Wt were the major discriminative components for wheat genotypes. Present study explained that shoot related parameters could be used as a selection criterion to categorize salt-tolerant genotypes. Outperforming genotypes 1104 and 1106 in saline conditions could be used as parents in creation of salt-tolerant wheat genotypes, and parameters such as SL, SW, TW, and RGR-Wt for early screening will be important for creating salt-tolerant and high yielding wheat genotypes.

15.
Front Plant Sci ; 13: 866793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586222

RESUMO

Weeds cause a serious constraint to wheat productivity. Chemical weed control is considered the most effective method to control weeds; however, a suitable dose and combination of herbicide with adjuvants play a vital role in controlling weeds and producing maximum wheat production. A field study was conducted to investigate the effectiveness of various doses of metribuzin alone or in combination with adjuvants [Bio-power (alkyl ether sulfates and sodium salts) and Ad-500 (fatty alcohol ethoxylate)] on the growth and yield of wheat and its associated weeds. Metribuzin at 175, 140, and 105 g a.i ha-1, each in combination with adjuvants (Bio-power or Ad-500) at 400 ml ha-1, were sprayed. A weedy check was also included as a control treatment. The wheat crop was infested with Fumaria indica, Melilotus indica, Anagallis arvensis, and Phalaris minor, and metribuzin with or without adjuvant was sprayed at two- to four-leaf stage of the weeds. The photosynthetic activity, weed population of each weed, and biomass of each weed was significantly affected by all herbicides along with the adjuvant. However, maximum inhibition of tested weeds was observed where metribuzin at 175 g a.i ha-1 + Bio-power at 400 ml ha-1 were sprayed. Metribuzin sprayed at 175 g a.i ha-1 with or without Bio-power recorded a maximum 1,000-grain weight, biological yield, and grain yield. Conclusively, metribuzin sprayed at 175 g a.i ha-1 + Bio-power at 400 at ml ha-1 have the potential to improve wheat yield by inhibiting weed growth, and Bio-power was superior to Ad-500 in improving the efficacy of metribuzin against weeds of wheat crop.

16.
Oxid Med Cell Longev ; 2022: 5029853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535358

RESUMO

Background: Valvular heart disease (VHD) is a major contributor to loss of physical function and longevity. Oxidative stress is one of the key causative factors involved in heart disease including VHD. Here, we aimed to illuminate the role and relation of oxidative stress to the VHD risk markers in the human population. Materials and Methods: 150 VHD patients and 103 healthy individuals as control were selected for the study and were divided into three groups: the aortic valve, mitral valve, and combined disease based on valvular calcification. Results: Our results demonstrated enhanced oxidative stress in the VHD condition, as we found elevated levels of reactive oxygen species (ROS) at the serum, supported by an increased level of thiobarbituric acid reactive substances (TBARs) in the cardiac valvular tissues of the VHD patients. In contrast, we experienced declined antioxidants including Super Oxide Dismutase (SOD), catalase (CAT), and peroxidase (POD) activities. Concurrently, increasing levels of C-reactive protein (CRP), high-sensitivity cardiac troponin I (hs-cTnI), and high-sensitivity cardiac troponin T (hs-cTnT) were detected in the aortic, mitral, and combined disease condition, suggesting a key association of oxidative stress to VHD conditions. Furthermore, regression analysis validated a key association between the impairment of the redox system (ROS and antioxidant enzyme activities) and VHD condition. Conclusion: Taken together, dysregulated oxidative stress contributes to the progression of VHD via positively correlating with CRP, hs-TnI, and hs-TnT level.


Assuntos
Proteína C-Reativa , Doenças das Valvas Cardíacas , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Troponina
17.
Front Microbiol ; 13: 815704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602039

RESUMO

Due to wastewater irrigation, heavy metal (HM) exposure of agricultural soils is a major limiting factor for crop productivity. Plant growth-promoting bacteria (PGPB) may lower the risk of HM toxicity and increase crop yield. In this context, we evaluated two HM-resistant PGPB strains, i.e., Citrobacter werkmanii strain WWN1 and Enterobacter cloacae strain JWM6 isolated from wastewater-irrigated agricultural soils, for their efficacy to mitigate HM (Cd, Ni, and Pb) stress in a pot experiment. Increasing concentrations (0, 50, 100, and 200 ppm) of each HM were used to challenge wheat plants. Heavy metal stress negatively affected wheat growth, biomass, and physiology. The plants under elevated HM concentration accumulated significantly higher amounts of heavy metals (HMs) in shoots and roots, resulting in increased oxidative stress, which was evident from increased malondialdehyde (MDA) content in roots and shoots. Moreover, alterations in antioxidants like superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) were observed in plants under HM stress. The severity of damage was more pronounced with rising HM concentration. However, inoculating wheat with Citrobacter werkmanii strain WWN1 and Enterobacter cloacae strain JWM6 (107 CFU ml-1) improved plant shoot length (11-42%), root length (19-125%), fresh weight (41-143%), dry weight (65-179%), and chlorophyll a (14%-24%) and chlorophyll b content (2-24%) under HM stress. Citrobacter werkmanii strain WWN1 and Enterobacter cloacae strain JWM6 either alone or in co-inoculation enhanced the antioxidant enzyme activity, which may lower oxidative stress in plants. However, seeds treated with the bacterial consortium showed an overall better outcome in altering oxidative stress and decreasing HM accumulation in wheat shoot and root tissues. Fourier transform infrared spectroscopy indicated the changes induced by HMs in functional groups on the biomass surface that display effective removal of HMs from aqueous medium using PGPB. Thus, the studied bacterial strains may have adequate fertilization and remediation potential for wheat cultivated in wastewater-irrigated soils. However, molecular investigation of mechanisms adopted by these bacteria to alleviate HM stress in wheat is required to be conducted.

18.
BMC Genomics ; 23(1): 298, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413795

RESUMO

BACKGROUND: Recently genomic selection (GS) has emerged as an important tool for plant breeders to select superior genotypes. Multi-trait (MT) prediction model provides an opportunity to improve the predictive ability of expensive and labor-intensive traits. In this study, we assessed the potential use of a MT genomic prediction model by incorporating two physiological traits (canopy temperature, CT and normalized difference vegetation index, NDVI) to predict 5 complex primary traits (harvest index, HI; grain yield, GY; grain number, GN; spike partitioning index, SPI; fruiting efiiciency, FE) using two cross-validation schemes CV1 and CV2. RESULTS: In this study, we evaluated 236 wheat genotypes in two locations in 2 years. The wheat genotypes were genotyped with genotyping by sequencing approach which generated 27,466 SNPs. MT-CV2 (multi-trait cross validation 2) model improved predictive ability by 4.8 to 138.5% compared to ST-CV1(single-trait cross validation 1). However, the predictive ability of MT-CV1 was not significantly different compared to the ST-CV1 model. CONCLUSIONS: The study showed that the genomic prediction of complex traits such as HI, GN, and GY can be improved when correlated secondary traits (cheaper and easier phenotyping) are used. MT genomic selection could accelerate breeding cycles and improve genetic gain for complex traits in wheat and other crops.


Assuntos
Genoma de Planta , Triticum , Genômica , Genótipo , Modelos Genéticos , Herança Multifatorial , Fenótipo , Melhoramento Vegetal , Estações do Ano , Seleção Genética , Triticum/genética
19.
Molecules ; 27(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335306

RESUMO

Nano-bioremediation application is an ecologically and environmentally friendly technique to overcome the catastrophic situation in soil because of petroleum waste contamination. We evaluated the efficiency of oil-degrading bacterial consortium and silver nanoparticles (AgNPs) with or without fertilizer to remediate soils collected from petroleum waste contaminated oil fields. Physicochemical characteristics of control soil and petroleum contaminated soils were assessed. Four oil-degrading strains, namely Bacillus pumilus (KY010576), Exiguobacteriaum aurantiacum (KY010578), Lysinibacillus fusiformis (KY010586), and Pseudomonas putida (KX580766), were selected based on their in vitrohydrocarbon-degrading efficiency. In a lab experiment, contaminated soils were treated alone and with combined amendments of the bacterial consortium, AgNPs, and fertilizers (ammonium nitrate and diammonium phosphate). We detected the degradation rate of total petroleum hydrocarbons (TPHs) of the soil samples with GC-FID at different intervals of the incubation period (0, 5, 20, 60, 240 days). The bacterial population (CFU/g) was also monitored during the entire period of incubation. The results showed that 70% more TPH was degraded with a consortium with their sole application in 20 days of incubation. There was a positive correlation between TPH degradation and the 100-fold increase in bacterial population in contaminated soils. This study revealed that bacterial consortiums alone showed the maximum increase in the degradation of TPHs at 20 days. The application of nanoparticles and fertilizer has non-significant effects on the consortium degradation potential. Moreover, fertilizer alone or in combination with AgNPs and consortium slows the rate of degradation of TPHs over a short period. Still, it subsequently accelerates the rate of degradation of TPHs, and a negligible amount remains at the end of the incubation period.


Assuntos
Nanopartículas Metálicas , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Consórcios Microbianos , Petróleo/análise , Prata , Solo , Microbiologia do Solo , Poluentes do Solo/análise
20.
Data Brief ; 42: 108057, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35345839

RESUMO

Plant microbiome referred to as plant second genome, plays pivotal role in determination of vigor and productivity of plant. Current high-throughput sequence technologies provide remarkable insight into microbial diversity and host microbe interaction. The obtained dataset aimed to reveal the core bacterial community residing the rhizosphere of two leading cereal crops Zea mays and Triticum aestivum grown in different seasons at the same geographical area. The rhizosphere bacterial communities were explored via amplicon sequencing of V3-V4 region of 16S rRNA region using IonS5™XL sequencing platform. The classified tags for 16S rRNA from both the samples were clustered into 1502 Microbial operational taxonomic units (OTUs) at 97% similarity with 1340 OTUs in Zea mays and 1337 OTUs in Triticum aestivum. Ten bacterial phyla predominant in the rhizosphere were Proteobacteria, Actinobacteria, Firmicutes, Acidobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Verrucomicrobia, Nitrospirae and Thermomicrobia. These bacterial phyla accounted for 98% and 98.9% of the OTUs in Zea mays and Triticum aestivum, respectively. Statistical analysis depicted the presence of slight variations in the relative abundance of bacterial groups residing the rhizosphere of Zea mays and Triticum aestivum. The community data produced in the present work can be used for meta-analysis studies to understand rhizosphere bacterial community of two major cereal crops. Furthermore, bacterial composition and diversity data is prerequisite for rhizosphere engineering to enhance cereal production to cope with upcoming global challenges of climate change and population growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...