Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Front Chem ; 12: 1397066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903202

RESUMO

This work provides a brief comparative analysis of the influence of heat creation on micropolar blood-based unsteady magnetised hybrid nanofluid flow over a curved surface. The Powell-Eyring fluid model was applied for modelling purposes, and this work accounted for the impacts of both viscous dissipation and Joule heating. By investigating the behaviours of Ag and TiO2 nanoparticles dispersed in blood, we aimed to understand the intricate phenomenon of hybridisation. A mathematical framework was created in accordance with the fundamental flow assumptions to build the model. Then, the model was made dimensionless using similarity transformations. The problem of a dimensionless system was then effectively addressed using the homotopy analysis technique. A cylindrical surface was used to calculate the flow quantities, and the outcomes were visualised using graphs and tables. Additionally, a study was conducted to evaluate skin friction and heat transfer in relation to blood flow dynamics; heat transmission was enhanced to raise the Biot number values. According to the findings of this study, increasing the values of the unstable parameters results in increase of the blood velocity profile.

2.
Leukemia ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890448

RESUMO

Measurable residual disease (MRD) surveillance in acute myeloid leukemia (AML) may identify patients destined for relapse and thus provide the option of pre-emptive therapy to improve their outcome. Whilst flow cytometric MRD (Flow-MRD) can be applied to high-risk AML/ myelodysplasia patients, its diagnostic performance for detecting impending relapse is unknown. We evaluated this in a cohort comprising 136 true positives (bone marrows preceding relapse by a median of 2.45 months) and 155 true negatives (bone marrows during sustained remission). At an optimal Flow-MRD threshold of 0.040%, clinical sensitivity and specificity for relapse was 74% and 87% respectively (51% and 98% for Flow-MRD ≥ 0.1%) by 'different-from-normal' analysis. Median relapse kinetics were 0.78 log10/month but significantly higher at 0.92 log10/month for FLT3-mutated AML. Computational (unsupervised) Flow-MRD (C-Flow-MRD) generated optimal MRD thresholds of 0.036% and 0.082% with equivalent clinical sensitivity to standard analysis. C-Flow-MRD-identified aberrancies in HLADRlow or CD34+CD38low (LSC-type) subpopulations contributed the greatest clinical accuracy (56% sensitivity, 90% specificity) and notably, by longitudinal profiling expanded rapidly within blasts in > 40% of 86 paired MRD and relapse samples. In conclusion, flow MRD surveillance can detect MRD relapse in high risk AML and its evaluation may be enhanced by computational analysis.

3.
Pediatr Blood Cancer ; : e31157, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934686

RESUMO

Inconsistencies in the definition of clinically unsuspected venous thromboembolism (VTE) in pediatric patients recently led to the recommendation of standardizing this terminology. Clinically unsuspected VTE (cuVTE) is defined as the presence of VTE on diagnostic imaging performed for indications unrelated to VTE in a patient without symptoms or clinical history of VTE. The prevalence of cuVTE in pediatric cancer patients is unclear. Therefore, the main objective of our study was to determine the prevalence of cuVTE in pediatric cancer patients. All patients 0-18 years old, treated at the IWK in Halifax, Nova Scotia, from August 2005 through December 2019 with a known cancer diagnosis and at least one imaging study were eligible (n = 743). All radiology reports available for these patients were reviewed (n = 18,120). The VTE event was labeled a priori as cuVTE event for radiology reports that included descriptive texts indicating a diagnosis of thrombosis including thrombus, central venous catheter-related, thrombosed aneurysm, tumor thrombosis, non-occlusive thrombus, intraluminal filling defect, or small fragment clot for patients without documentation of clinical history and or signs of VTE. A total of 18,120 radiology reports were included in the review. The prevalence of cuVTE was 5.5% (41/743). Echocardiography and computed tomography had the highest rate of cuVTE detection, and the most common terminologies used to diagnose cuVTE were thrombus and non-occlusive thrombus. The diagnosis of cuVTE was not associated with age, sex, and type of cancer. Future efforts should focus on streamlining radiology reports to characterize thrombi. The clinical significance of these cuVTE findings and their application to management, post-thrombotic syndrome, and survival compared to cases with symptomatic VTE and patients without VTE should be further studied.

4.
Heliyon ; 10(8): e30105, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699715

RESUMO

In this study, green synthesis of gold nanoparticles (AuNPs) using aqueous extract from Hymenaea courbaril resin (HCR) is reported. The successful formation, functional group involvement, size, and morphology of the subject H. courbaril resin mediated gold nanoparticles (HCRAuNPs) were confirmed by Ultra Violet-Visible (UV-vis) spectroscopy, Fourier-Transform Infrared spectroscopy (FTIR), and Transmission Electron Microscopy (TEM) techniques. Stable and high yield of HCRAuNPs was formed in 1:15 (aqueous solution: salt solution) reacted in sunlight as indicated by the visual colour change and appearance of surface Plasmon resonance (SPR) at 560 nm. From the FT-IR results, the phenolic hydroxyl (-OH) functional group was found to be involved in synthesis and stabilization of nanoparticles. The TEM analysis showed that the particles are highly dispersed and spherical in shape with average size of 17.5 nm. The synthesized HCRAuNPs showed significant degradation potential against organic dyes, including methylene blue (MB, 85 %), methyl orange (MO, 90 %), congo red (CR, 83 %), and para nitrophenol (PNP, 76 %) up to 180 min. The nanoparticles also demonstrated the effective detection of pharmaceutical pollutants, including amoxicillin, levofloxacin, and azithromycin in aqueous environment as observable changes in color and UV-Vis spectral graph.

5.
Front Chem ; 12: 1361082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741671

RESUMO

SARS-CoV-2 infection affects and modulates serum as well as hematological parameters. However, whether it modifies these parameters in the existing disease conditions, which help in the erection of specific treatments for the disease, is under investigation. Here, we aimed to determine whether serum and hematological parameters alteration in various diseases, diabetes mellitus (DM), hypertension (HTN), ischemic heart disease (IHD) and myocardial infarction (MI) conditions correlate and signal SARS-CoV-2 infection, which could be used as a rapid diagnosis tool for SARS-CoV-2 infection in disease conditions. To assess the projected goals, we collected blood samples of 1,113 male and female patients with solo and multiple disease conditions of DM/HTN/IHD/MI with severe COVID-19, followed by biochemical analysis, including COVID-19 virus detection by RT-qPCR. Furthermore, blood was collected from age-matched disease and healthy individuals 502 and 660 and considered as negative control. In our results, we examined higher levels of serum parameters, including D-dimer, ferritin, hs-CRP, and LDH, as well as hematological parameters, including TLC in sole and multiple diseases (DM/HTN/IHD/MI) conditions compared to the control subjects. Besides, the hematological parameters, including Hb, RBC, and platelet levels, decreased in the patients. In addition, we found declined levels of leukocyte count (%), lymphocyte (%), monocyte (%), and eosinophil (%), and elevated level of neutrophil levels (%) in all the disease patients infected with SARS-CoV-2. Besides, NLR and NMR ratios were also statistically significantly (p < 0.05) high in the patients with solo and multiple disease conditions of DM/HTN/IHD/MI infected with the SARS-CoV-2 virus. In conclusion, rapid alteration of sera and hematological parameters are associated with SARS-CoV-2 infections, which could help signal COVID-19 in respective disease patients. Moreover, our results may help to improve the clinical management for the rapid diagnosis of COVID-19 concurrent with respective diseases.

6.
Nat Commun ; 15(1): 4227, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762592

RESUMO

Multisystem inflammatory syndrome in children is a post-infectious presentation SARS-CoV-2 associated with expansion of the T cell receptor Vß21.3+ T-cell subgroup. Here we apply muti-single cell omics to compare the inflammatory process in children with acute respiratory COVID-19 and those presenting with non SARS-CoV-2 infections in children. Here we show that in Multi-Inflammatory Syndrome in Children (MIS-C), the natural killer cell and monocyte population demonstrate heightened CD95 (Fas) and Interleuking 18 receptor expression. Additionally, TCR Vß21.3+ CD4+ T-cells exhibit skewed differentiation towards T helper 1, 17 and regulatory T cells, with increased expression of the co-stimulation receptors ICOS, CD28 and interleukin 18 receptor. We observe no functional evidence for NLRP3 inflammasome pathway overactivation, though MIS-C monocytes show elevated active caspase 8. This, coupled with raised IL18 mRNA expression in CD16- NK cells on single cell RNA sequencing analysis, suggests interleukin 18 and CD95 signalling may trigger activation of TCR Vß21.3+ T-cells in MIS-C, driven by increased IL-18 production from activated monocytes and CD16- Natural Killer cells.


Assuntos
COVID-19 , Interleucina-18 , Células Matadoras Naturais , Monócitos , Transdução de Sinais , Síndrome de Resposta Inflamatória Sistêmica , Receptor fas , Humanos , Interleucina-18/metabolismo , Criança , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptor fas/metabolismo , Receptor fas/genética , Monócitos/imunologia , Monócitos/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , COVID-19/imunologia , COVID-19/virologia , COVID-19/metabolismo , COVID-19/complicações , Inflamassomos/metabolismo , Inflamassomos/imunologia , SARS-CoV-2/imunologia , Adolescente , Masculino , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Feminino , Pré-Escolar , Análise de Célula Única , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD28/metabolismo , Ativação Linfocitária/imunologia , Receptores de Interleucina-18/metabolismo , Receptores de Interleucina-18/genética , Receptores de Interleucina-18/imunologia
7.
J Clin Med ; 13(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38792388

RESUMO

Background: Patient outcomes after percutaneous coronary intervention (PCI) have improved over the last 30 years due to better techniques, therapies, and care processes. This study evaluated contemporary predictors of post-PCI major adverse cardiovascular events (MACE) and summarized risk in a parsimonious risk prediction model. Methods: The Cardiovascular Patient-Level Analytical Platform (CLiPPeR) is an observational dataset of baseline variables and longitudinal outcomes from the American College of Cardiology's CathPCI Registry® and national claims data. Cox regression was used to evaluate 2-6 years of patient follow-up (mean: 2.56 years), ending in December 2017, after index PCI between 2012 and 2015 (N = 1,450,787), to examine clinical and procedural predictors of MACE (first myocardial infarction, stroke, repeat PCI, coronary artery bypass grafting, and mortality). Cox analyses of post-PCI MACE were landmarked 28 days after index PCI. Results: Overall, 12.4% (n = 179,849) experienced MACE. All variables predicted MACE, with cardiogenic shock, cardiac arrest, four diseased coronary vessels, and chronic kidney disease having hazard ratios (HRs) ≥ 1.50. Other major predictors of MACE were in-hospital stroke, three-vessel disease, anemia, heart failure, and STEMI presentation. The index revascularization and discharge prescription of aspirin, P2Y12 inhibitor, and lipid-lowering medication had HR ≤ 0.67. The primary Cox model had c-statistic c = 0.761 for MACE versus c = 0.701 for the parsimonious model and c = 0.752 for the parsimonious model plus treatment variables. Conclusions: In a nationally representative US sample of post-PCI patients, predictors of longitudinal MACE risk were identified, and a parsimonious model efficiently encapsulated them. These findings may aid in assessing care processes to further improve care post-PCI outcomes.

8.
iScience ; 27(4): 109576, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38638836

RESUMO

AML is characterized by mutations in genes associated with growth regulation such as internal tandem duplications (ITD) in the receptor kinase FLT3. Inhibitors targeting FLT3 (FLT3i) are being used to treat patients with FLT3-ITD+ but most relapse and become resistant. To elucidate the resistance mechanism, we compared the gene regulatory networks (GRNs) of leukemic cells from patients before and after relapse, which revealed that the GRNs of drug-responsive patients were altered by rewiring their AP-1-RUNX1 axis. Moreover, FLT3i induces the upregulation of signaling genes, and we show that multiple cytokines, including interleukin-3 (IL-3), can overcome FLT3 inhibition and send cells back into cycle. FLT3i leads to loss of AP-1 and RUNX1 chromatin binding, which is counteracted by IL-3. However, cytokine-mediated drug resistance can be overcome by a pan-RAS inhibitor. We show that cytokines instruct AML growth via the transcriptional regulators AP-1 and RUNX1 and that pan-RAS drugs bypass this barrier.

9.
Chemosphere ; 356: 141932, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593955

RESUMO

The presence of heavy metals in water pose a serious threat to both public and environmental health. However, the advances in the application of low cost biochar based adsorbent synthesize from various feedstocks plays an effective role in the of removal heavy metals from water. This study implies the introduction of novel method of converting food waste (FW) to biochar through pyrolysis, examine its physiochemical characteristics, and investigate its adsorption potential for the removal of heavy metals from water. The results revealed that biochar yield decreased from 18.4 % to 14.31 % with increase in pyrolysis temperature from 350 to 550 °C. Likewise, increase in the pyrolysis temperature also resulted in the increase in the ash content from 39.87 % to 42.05 % thus transforming the biochar into alkaline nature (pH 10.17). The structural and chemical compositions of biochar produced at various temperatures (350, 450, and 550 °C) showed a wide range of mineralogical composition, and changes in the concentration of surface functional groups. Similarly, the adsorption potential showed that all the produced biochar effectively removed the selected heavy metals from wastewater. However a slightly high removal capacity was observed for biochar produced at 550 °C that was credited to the alkaline nature, negatively charged biochar active sites due to O-containing functional groups and swelling behavior. The results also showed that the maximum adsorption was recorded at pH 8 at adsorbent dose of 2.5 g L-1 with the contact time of 120 min. To express the adsorption equilibrium, the results were subjected to Langmuir and Freundlich isotherms and correlation coefficient implies that the adsorption process follows the Freundlich adsorption isotherm. The findings of this study suggest the suitability of the novel FW derived biochar as an effective and low cost adsorbent for the removal of heavy metals form wastewater.


Assuntos
Carvão Vegetal , Metais Pesados , Águas Residuárias , Poluentes Químicos da Água , Carvão Vegetal/química , Metais Pesados/química , Metais Pesados/isolamento & purificação , Águas Residuárias/química , Adsorção , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Pirólise , Alimentos , Perda e Desperdício de Alimentos
10.
J Immunol ; 212(11): 1639-1646, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629913

RESUMO

Recently, we reported that preexposure of B cells to IL-4 induced an alternate, signalosome-independent BCR signaling pathway leading to protein kinase C (PKC)δ phosphorylation (pTyr311), which occurs in the membrane compartment. This is considered to represent a form of receptor crosstalk and signal integration. Unlike the classical BCR signaling pathway, Lyn kinase is indispensable for BCR-induced downstream events in the alternate pathway. Our previous report that alternate BCR signaling leading to ERK phosphorylation is triggered by LPS and PAM3CSK4 (much like IL-4) raises the possibility that other signaling outcomes such as PKCδ phosphorylation might be similarly affected. To explore the range of mediators capable of producing an alternate pathway for BCR signaling, we examined PKCδ translocation and phosphorylation in LPS- and PAM3CSK4-treated B cells stimulated by anti-Ig. We found that LPS and PAM3CSK4 alter the signaling pathway used by the BCR to produce PKCδ phosphorylation. As with IL-4, elements of the signalosome are not needed for PKCδ phosphorylation when BCR triggering occurs after LPS and PAM3CSK4. However, with LPS and PAM3CSK4, anti-Ig-induced phosphorylation of PKCδ takes place in the cytosol, in contrast to the IL-4-induced alternate pathway, wherein PKCδ phosphorylation occurs in the membrane. Furthermore, the BCR signaling pathway induced by LPS and PAM3CSK4 differs from that induced by IL-4 by not requiring Lyn. Thus, an alternate, signalosome-independent BCR signaling pathway for PKCδ phosphorylation is induced by TLR agonists but differs in important ways from the alternate pathway induced by IL-4.


Assuntos
Interleucina-4 , Lipopeptídeos , Lipopolissacarídeos , Proteína Quinase C-delta , Receptores de Antígenos de Linfócitos B , Transdução de Sinais , Quinases da Família src , Proteína Quinase C-delta/metabolismo , Fosforilação , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Interleucina-4/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Lipopeptídeos/farmacologia , Quinases da Família src/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Receptores Toll-Like/metabolismo , Camundongos Endogâmicos C57BL
12.
Nat Commun ; 15(1): 1359, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355578

RESUMO

Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations, maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However, patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here, we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model, we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Células-Tronco/metabolismo , Células-Tronco Neoplásicas/metabolismo
13.
RSC Adv ; 14(10): 7022-7030, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38414991

RESUMO

Uric acid (UA) is a significant indicator of human health because it is linked to several diseases, including renal failure, kidney stones, arthritis, and gout. Uric acid buildup in the joints is the source of chronic and painful diseases. When UA is present in large quantities, it causes tissue injury in the joints that are afflicted. In this research, silver oxide-doped activated carbon nanoparticles were synthesized and then functionalized with an ionic liquid. The synthesized nanomaterial assembly was employed as a colorimetric sensing platform for uric acid. Activated carbon offers a large internal surface area that acts as a good carrier for catalytic reactions. A salt-melting approach was used to synthesize the silver oxide-doped activated carbon nanocomposite. The synthesis was confirmed through various techniques, such as UV-vis spectrophotometer, FTIR, XRD, SEM, and EDX. The colorimetric change from blue-green to colorless was observed with the naked eye and confirmed by UV-vis spectroscopy. To obtain the best colorimetric change, several parameters, such as pH, capped NP loading, TMB concentration, hydrogen peroxide concentration, and time, were optimized. The optimized experimental conditions for the proposed sensor were pH 4 with 35 µL of NPs, a 40 mM TMB concentration, and a 4 minutes incubation time. The sensor linear range is 0.001-0.36 µM, with an R2 value of 0.999. The suggested sensor limits of detection and quantification are 0.207 and 0.69 nM, respectively. Potential interferers, such as ethanol, methanol, urea, Ca2+, K+, and dopamine, did not affect the detection of uric acid.

14.
Front Bioeng Biotechnol ; 12: 1338920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390362

RESUMO

Hydrogen peroxide (H2O2) is one of the main byproducts of most enzymatic reactions, and its detection is very important in disease conditions. Due to its essential role in healthcare, the food industry, and environmental research, accurate H2O2 determination is a prerequisite. In the present work, Morus nigra sawdust deposited zinc oxide (ZnO) nanoparticles (NPs) were synthesized by the use of Trigonella foenum extract via a hydrothermal process. The synthesized platform was characterized by various techniques, including UV-Vis, FTIR, XRD, SEM, EDX, etc. FTIR confirmed the presence of a Zn‒O characteristic peak, and XRD showed the hexagonal phase of ZnO NPs with a 35 nm particle size. The EDX analysis confirmed the presence of Zn and O. SEM images showed that the as-prepared nanoparticles are distributed uniformly on the surface of sawdust. The proposed platform (acetic acid-capped ZnO NPs deposited sawdust) functions as a mimic enzyme for the detection of H2O2 in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) colorimetrically. To get the best results, many key parameters, such as the amount of sawdust-deposited nanoparticles, TMB concentration, pH, and incubation time were optimized. With a linear range of 0.001-0.360 µM and an R2 value of 0.999, the proposed biosensor's 0.81 nM limit of quantification (LOQ) and 0.24 nM limit of detection (LOD) were predicted, respectively. The best response for the proposed biosensor was observed at pH 7, room temperature, and 5 min of incubation time. The acetic acid-capped sawdust deposited ZnO NPs biosensor was also used to detect H2O2 in blood serum samples of diabetic patients and suggest a suitable candidate for in vitro diagnostics and commercial purposes.

15.
Heliyon ; 10(4): e25814, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375246

RESUMO

Salvia (Lamiaceae family) is used as a brain tonic to improve cognitive function. The species including S. plebeia and S. moorcroftiana are locally used to cure hepatitis, cough, tumours, hemorrhoids, diarrhoea, common cold, flu, and asthma. To the best of authors' knowledge, no previous study has been conducted on synthesis of S. plebeia and S. moorcroftiana silver nanoparticles (SPAgNPs and SMAgNPs). The study was aimed to synthesize AgNPs from the subject species aqueous and ethanol extracts, and assess catalytic potential in degradation of standard and extracted (from yums, candies, and snacks) dyes, nitrophenols, and antibiotics. The study also aimed at AgNPs as probe in sensing metalloids and heavy metal ions including Pb2+, Cu2+, Fe3+, Ni2+, and Zn2+. From the results, it was found that Salvia aqueous extract afforded stable AgNPs in 1:9 and 1:15 (quantity of aqueous extract and silver nitrate solution concentration) whereas ethanol extract yielded AgNPs in 1:10 (quantity of ethanol extract and silver nitrate solution concentration) reacted in sunlight. The size of SPAgNPs and SMAgNPs determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were 21.7 nm and 19.9 nm, with spherical, cylindrical, and deep hollow morphology. The synthesized AgNPs demonstrated significant potential as catalyst in dyes; Congo red (85 %), methylene blue (75 %), Rhodamine B (<50 %), nitrophenols; ortho-nitrophenol (95-98 %) and para-nitrophenol (95-98 %), dyes extracted from food samples including yums, candies, and snacks. The antibiotics (amoxicillin, doxycycline, levofloxacin) degraded up to 80 %-95 % degradation. Furthermore, the synthesized AgNPs as probe in sensing of Pb2+, Cu2+, and Fe3+ in Kabul river water, due to agglomeration, caused a significant decrease and bathochromic shift of SPR band (430 nm) when analyzed after 30 min. The Pb2+ ions was comparatively more agglomerated and chelated. Thus, the practical applicability of AgNPs in Pb2+ sensing was significant. Based on the results of this research study, the synthesized AgNPs could provide promising efficiency in wastewater treatment containing organic dyes, antibiotics, and heavy metals.

16.
Plant Physiol Biochem ; 206: 108126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147709

RESUMO

Heavy metal cadmium (Cd) hinders plants' growth and productivity by causing different morphological and physiological changes. Nanoparticles (NPs) are promising for raising plant yield and reducing Cd toxicity. Nonetheless, the fundamental mechanism of nanoparticle-interfered Cd toxicity in Brassica parachineses L. remains unknown. A novel ZnO nanoparticle (ZnO-NPs) was synthesized using a microalgae strain (Chlorella pyrenoidosa) through a green process and characterized by different standard parameters through TEM, EDX, and XRD. This study examines the effect of different concentrations of ZnO-NPs (50 and 100 mgL-1) in B. parachineses L. under Cd stress through ultra-high-performance liquid chromatography/high-resolution mass spectrometry-based untargeted metabolomics profiling. In the presence of Cd toxicity, foliar spraying with ZnO-NPs raised Cu, Fe, Zn, and Mg levels in the roots and/or leaves, improved seedling development, as demonstrated by increased plant height, root length, and shoot and root fresh weight. Furthermore, the ZnO-NPs significantly enhanced the photosynthetic pigments and changed the antioxidant activities of the Cd-treated plants. Based on a metabolomics analysis, 481 untargeted metabolites were accumulated in leaves under normal and Cd-stressed conditions. These metabolites were highly enriched in producing organic acids, amino acids, glycosides, flavonoids, nucleic acids, and vitamin biosynthesis. Surprisingly, ZnO-NPs restored approximately 60% of Cd stress metabolites to normal leaf levels. Our findings suggest that green synthesized ZnO-NPs can balance ions' absorption, modulate the antioxidant activities, and restore more metabolites associated with plant growth to their normal levels under Cd stress. It can be applied as a plant growth regulator to alleviate heavy metal toxicity and improve crop yield in heavy metal-contaminated regions.


Assuntos
Chlorella , Metais Pesados , Nanopartículas , Poluentes do Solo , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Cádmio/análise , Antioxidantes , Chlorella/metabolismo , Nanopartículas/química , Metais Pesados/toxicidade , Poluentes do Solo/metabolismo
17.
ACS Omega ; 8(47): 44931-44941, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046308

RESUMO

Ascorbic acid is a vital biomolecule for human beings. When the body's level of ascorbic acid is abnormal, it can lead to a number of illnesses. Its appropriate concentration is necessary for the oxidation of prostaglandins and cyclic adenosine monophosphate, the production of dopamine, norepinephrine, epinephrine, and carnitine, and the expansion and durability of the collagen triple helix in humans. In the present work, silver nanoparticle synthesis was performed through a paracetamol-mediated approach. Different characterization techniques, such as X-ray diffractometry (XRD), energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), were used to confirm the prepared nanoparticles. Subsequently, the prepared Ag NPs functionalized with an ionic liquid were used as a sensing platform for ascorbic acid in blood serum samples. To achieve the best possible results, the proposed biosensor was optimized with different parameters such as TMB concentration, time, amount of capped nanoparticles (NPs), and pH. The proposed biosensor offers a sensitive and straightforward method for ascorbic acid with a linear range from 2 × 10-9 to 3.22 × 10-7 M, an LOD of 1.3 × 10-8 M, an LOQ of 4.3 × 10-8 M, and an R2 of 0.9996, Moreover, applications of the proposed biosensor were successfully used for the detection of ascorbic acid in samples of human plasma, suggesting that Ag NPs with high peroxidase-like activity, high stability, and facile synthesis exhibited promising applications in biomedical fields.

19.
Front Biosci (Landmark Ed) ; 28(10): 241, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37919081

RESUMO

BACKGROUND: Chickpea is one of the most important leguminous crops and its productivity is significantly affected by salinity stress. The use of ecofriendly, salt-tolerant, plant growth-promoting rhizobacteria (PGPR) as a bioinoculant can be very effective in mitigating salinity stress in crop plants. In the present study, we explored, characterized, and evaluated a potential PGPR isolate for improving chickpea growth under salt stress. METHODS: A potential PGPR was isolated from rhizospheric soils of chickpea plants grown in the salt-affected area of eastern Uttar Pradesh, India. The isolate was screened for salt tolerance and characterized for its metabolic potential and different plant growth-promoting attributes. Further, the potential of the isolate to promote chickpea growth under different salt concentrations was determined by a greenhouse experiment. RESULTS: A rhizobacteria isolate, CM94, which could tolerate a NaCl concentration of up to 8% was selected for this study. Based on the BIOLOG carbon source utilization, isolate CM94 was metabolically versatile and able to produce multiple plant growth-promoting attributes, such as indole acetic acid, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophore, hydrogen cyanide (HCN), and ammonia as well as solubilized phosphate. A polyphasic approach involving the analysis of fatty acid methyl ester (FAME) and 16S rRNA gene sequencing confirmed the identity of the isolate as Enterobacter sp. The results of greenhouse experiments revealed that isolate CM94 inoculation significantly enhanced the shoot length, root length, and fresh and dry weight of chickpea plants, under variable salinity stress. In addition, inoculation improved the chlorophyll, proline, sugar, and protein content in the tissues of the plant, while lowering lipid peroxidation. Furthermore, isolate CM94 reduced oxidative stress by enhancing the enzymatic activities of superoxide dismutase, catalase, and peroxidase compared to in the respective uninoculated plants. CONCLUSIONS: Overall, the results suggested that using Enterobacter sp. CM94 could significantly mitigate salinity stress and enhance chickpea growth under saline conditions. Such studies will be helpful in identifying efficient microorganisms to alleviate salinity stress, which in turn will help, to devise ecofriendly microbial technologies.


Assuntos
Cicer , Cicer/genética , Cicer/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Desenvolvimento Vegetal , Solo , Tolerância ao Sal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...