Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 108: 191-202, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27448793

RESUMO

Silymarin, a Silybum marianum seed extract containing a mixture of flavonolignans including silybin, is being used as an antihepatotoxic therapy for liver diseases. In this study, the enhancing effect of gamma irradiation on plant growth parameters of S. marianum under salt stress was investigated. The effect of gamma irradiation, either as a single elicitor or coupled with salinity, on chalcone synthase (CHS) gene expression and silybin A + B yield was also evaluated. The silybin A + B content in S. marianum fruits was estimated by liquid chromatography-mass spectrometry (LC-MS/MS). An increase in silybin content was accompanied by up-regulation of the CHS1, CHS2 and CHS3 genes, which are involved in the silybin biosynthetic pathway. The highest silybin A + B production (0.77 g/100 g plant DW) and transcript levels of the three studied genes (100.2-, 91.9-, and 24.3-fold increase, respectively) were obtained with 100GY gamma irradiation and 4000 ppm salty water. The CHS2 and CHS3 genes were partially sequenced and submitted to the NCBI database under the accession numbers KT252908.1 and KT252909.1, respectively. Developing new approaches to stimulate silybin biosynthetic pathways could be a useful tool to potentiate the use of plants as renewable resources of medicinal compounds.


Assuntos
Aciltransferases/genética , Cardo Mariano/genética , Silimarina/metabolismo , Aciltransferases/metabolismo , Frutas/genética , Frutas/metabolismo , Raios gama , Regulação da Expressão Gênica de Plantas , Germinação , Cardo Mariano/metabolismo , Cardo Mariano/efeitos da radiação , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Salinidade , Tolerância ao Sal , Sementes/crescimento & desenvolvimento , Silibina , Silimarina/genética
2.
Gene ; 533(1): 313-21, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24045133

RESUMO

Pilosocereus robinii is a rare species which is experiencing sudden population collapse. Identifying and developing effective conservation and management strategies to halt the forestall extinction of this species is crucial. The present study was conducted to assess the best conditions for in vitro propagation of this plant in regard to its morphogenic, genetic as well as the chemical potentials. A successful in vitro propagation system of P. robinii has been developed. MS hormone-free medium induced the best root morphogenic potential. The plants were acclimatized in the greenhouse at 100% survival rate. Besides, the somaclonal variations between the in vitro raised plants were analyzed using PCR-ISSR markers and SDS-PAGE protein, where the regenerated explants on MS medium supplemented with TDZ were the highest in inducing new specific marker bands. Sh6 ISSR primer showed the highest polymorphism value, 81.8% with 33 total amplified fragments, while Sh3 ISSR primer showed the lowest value with polymorphic percentage of 14.3%. Furthermore, SDS-PAGE protein analysis showed no variation in protein pattern of the studied treatments. On the other side, HPLC analysis of the in vitro plantlets extracts has shown that 2iP based treatments were the highest in organic acids accumulation, while the phenolic constituents' accumulation was found to reach its peak in the BA based treatments.


Assuntos
Cactaceae/genética , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Cactaceae/química , Cactaceae/fisiologia , Malatos/química , Fenóis/análise , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Regeneração
3.
Physiol Mol Biol Plants ; 19(1): 127-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24381444

RESUMO

Silybum marianum L. extracts are being used as antihepatotoxic therapy for liver diseases. Silymarin is a polyphenolic flavonoid mixture isolated from milk thistle which is believed to be responsible for the plant's hepatoprotective action. Regeneration of Silybum marianum plants from shoot tip explants and assessment of their morphogenic potential, silymarin total concentration and its major constituents upon exposure to medium composition alteration and different elicitors' application was targeted. Different concentrations of NaCl, quercetin, gamma irradiation and dried fungal extracts were used to elicit silymarin production in the cultures. The chemical composition of silymarin and its total concentration was investigated through HPLC at all the experiment stages. Multiple shoots were recorded after 3 weeks of culture on MS medium containing various concentrations of BA and/or NAA. IAA was more effective than NAA and IBA in inducing robust roots in shoot cultures. The flowering plants recorded 20 % and 40 % of the total plants number in the multiplication and rooting stages respectively. The highest total silymarin concentration reached its peak with (10 Gy) gamma-irradiation to be 6.598 % dry weight in the in vitro regenerated shoot tip explants. The in vitro grown flowers showed 1.7 times more sylimarin productivity as compared to that of the wild grown congruent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA