Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 4(8): 2094-2100, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31304746

RESUMO

The precise detection of flammable and explosive gases and vapors remains an important issue because of the increasing demand for renewable energy sources and safety requirements in industrial processes. Metal oxides (TiO2, SnO2, ZnO, etc.) are very attractive materials for the manufacturing of chemical gas sensors. However, their gas selectivity issues and further improvement in the sensing response remain a significant challenge. The incorporation of metal oxides with two-dimensional (2D) graphene oxide (GO) is considered to be a promising approach to obtaining hybrid structures with improved gas-sensing performance. Herein, we report the development of GO and niobium-doped titanium dioxide nanotube (NT) hybrid structures with a tunable selectivity and sensing response against hydrogen gas, achieved by properly controlling the degree of reduction and concentration of GO. The effects of these parameters are systematically studied in terms of the response amplitude and selectivity. It was found that, compared to undoped titanium dioxide nanotubes, the hybrid material with an optimal concentration of reduced-GO and the introduction of niobium shows an increase in hydrogen response of about an order of magnitude and a simultaneous reduction of the response to possible interfering compounds such as carbon monoxide and acetone, thus providing enhanced selectivity. This research may provide an efficient way to enhance the chemical sensing performance of metal oxide nanomaterials.

2.
ACS Nano ; 11(8): 8192-8198, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28771310

RESUMO

The crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe2, the top layer of selenium atoms is substituted by sulfur atoms, while the bottom selenium layer remains intact. The structure of this material is systematically investigated by Raman, photoluminescence, transmission electron microscopy, and X-ray photoelectron spectroscopy and confirmed by time-of-flight secondary ion mass spectrometry. Density functional theory (DFT) calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction activity is discovered for the Janus monolayer, and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

3.
Nano Lett ; 17(3): 2049-2056, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28218545

RESUMO

The measured frequencies and intensities of different first- and second-order Raman peaks of suspended graphene are used to show that optical phonons and different acoustic phonon polarizations are driven out of local equilibrium inside a submicron laser spot. The experimental results are correlated with a first-principles-based multiple temperature model to suggest a considerably lower equivalent local temperature of the flexural phonons than those of other phonon polarizations. The finding reveals weak coupling between the flexural modes with hot electrons and optical phonons. Since the ultrahigh intrinsic thermal conductivity of graphene has been largely attributed to contributions from the flexural phonons, the observed local nonequilibrium phenomena have important implications for understanding energy dissipation processes in graphene-based electronic and optoelectronic devices, as well as in Raman measurements of thermal transport in graphene and other two-dimensional materials.

4.
Philos Trans A Math Phys Eng Sci ; 375(2090)2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28219996

RESUMO

Plasmonic metasurfaces have been employed for moulding the flow of transmitted and reflected light, thereby enabling numerous applications that benefit from their ultra-thin sub-wavelength format. Their appeal is further enhanced by the incorporation of active electro-optic elements, paving the way for dynamic control of light's properties. In this paper, we realize a dynamic polarization state generator using a graphene-integrated anisotropic metasurface (GIAM) that converts the linear polarization of the incident light into an elliptical one. This is accomplished by using an anisotropic metasurface with two principal polarization axes, one of which possesses a Fano-type resonance. A gate-controlled single-layer graphene integrated with the metasurface was employed as an electro-optic element controlling the phase and intensity of light polarized along the resonant axis of the GIAM. When the incident light is polarized at an angle to the resonant axis of the metasurface, the ellipticity of the reflected light can be dynamically controlled by the application of a gate voltage. Thus accomplished dynamic polarization control is experimentally demonstrated and characterized by measuring the Stokes polarization parameters. Large changes of the ellipticity and the tilt angle of the polarization ellipse are observed. Our measurements show that the tilt angle can be changed from positive values through zero to negative values while keeping the ellipticity constant, potentially paving the way to rapid ellipsometry and other characterization techniques requiring fast polarization shifting.This article is part of the themed issue 'New horizons for nanophotonics'.

5.
Beilstein J Nanotechnol ; 7: 1421-1427, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826516

RESUMO

A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohybrid is a promising structure for the monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds.

6.
Nano Lett ; 16(6): 3607-15, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27152557

RESUMO

Strong interaction of graphene with light accounts for one of its most remarkable properties: the ability to absorb 2.3% of the incident light's energy within a single atomic layer. Free carrier injection via field-effect gating can dramatically vary the optical properties of graphene, thereby enabling fast graphene-based modulators of the light intensity. However, the very thinness of graphene makes it difficult to modulate the other fundamental property of the light wave: its optical phase. Here we demonstrate that considerable phase control can be achieved by integrating a single-layer graphene (SLG) with a resonant plasmonic metasurface that contains nanoscale gaps. By concentrating the light intensity inside of the nanogaps, the metasurface dramatically increases the coupling of light to the SLG and enables control of the phase of the reflected mid-infrared light by as much as 55° via field-effect gating. We experimentally demonstrate graphene-based phase modulators that maintain the amplitude of the reflected light essentially constant over most of the phase tuning range. Rapid nonmechanical phase modulation enables a new experimental technique, graphene-based laser interferometry, which we use to demonstrate motion detection with nanoscale precision. We also demonstrate that by the judicious choice of a strongly anisotropic metasurface the graphene-controlled phase shift of light can be rendered polarization-dependent. Using the experimentally measured phases for the two orthogonal polarizations, we demonstrate that the polarization state of the reflected light can be by modulated by carrier injection into the SLG. These results pave the way for novel high-speed graphene-based optical devices and sensors such as polarimeters, ellipsometers, and frequency modulators.

7.
ACS Nano ; 9(12): 11699-707, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26529570

RESUMO

Continuous ultrathin graphite foams (UGFs) have been actively researched recently to obtain composite materials with increased thermal conductivities. However, the large pore size of these graphitic foams has resulted in large thermal resistance values for heat conduction from inside the pore to the high thermal conductivity graphitic struts. Here, we demonstrate that the effective thermal conductivity of these UGF composites can be increased further by growing long CNT networks directly from the graphite struts of UGFs into the pore space. When erythritol, a phase change material for thermal energy storage, is used to fill the pores of UGF-CNT hybrids, the thermal conductivity of the UGF-CNT/erythritol composite was found to increase by as much as a factor of 1.8 compared to that of a UGF/erythritol composite, whereas breaking the UGF-CNT bonding in the hybrid composite resulted in a drop in the effective room-temperature thermal conductivity from about 4.1 ± 0.3 W m(-1) K(-1) to about 2.9 ± 0.2 W m(-1) K(-1) for the same UGF and CNT loadings of about 1.8 and 0.8 wt %, respectively. Moreover, we discovered that the hybrid structure strongly suppresses subcooling of erythritol due to the heterogeneous nucleation of erythritol at interfaces with the graphitic structures.

8.
ACS Nano ; 9(9): 8737-43, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26257072

RESUMO

Here we report an electrochemical method to simultaneously reduce and delaminate graphene oxide (G-O) thin films deposited on metal (Al and Au) substrates. During the electrochemical reaction, interface charge transfer between the G-O thin film and the electrode surface was found to be important in eliminating oxygen-containing groups, yielding highly reduced graphene oxide (rG-O). In the meantime, hydrogen bubbles were electrochemically generated at the rG-O film/electrode interface, propagating the film delamination. Unlike other metal-based G-O reduction methods, the metal used here was either not etched at all (for Au) or etched a small amount (for Al), thus making it possible to reuse the substrate and lower production costs. The delaminated rG-O film exhibits a thickness-dependent degree of reduction: greater reduction is achieved in thinner films. The thin rG-O films having an optical transmittance of 90% (λ = 550 nm) had a sheet resistance of 6390 ± 447 Ω/□ (ohms per square). rG-O-based stretchable transparent conducting films were also demonstrated.

9.
Small ; 11(37): 4922-30, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26153327

RESUMO

A mild and environmental-friendly method is developed for fabricating a 3D interconnected graphene electrode with large-scale continuity. Such material has interlayer pores between reduced graphene oxide nanosheets and in-plane pores. Hence, a specific surface area up to 835 m(2) g(-1) and a high powder conductivity up to 400 S m(-1) are achieved. For electrochemical applications, the interlayer pores can serve as "ion-buffering reservoirs" while in-plane ones act as "channels" for shortening the mass cross-plane diffusion length, reducing the ion response time, and prevent the interlayer restacking. As binder-free supercapacitor electrode, it delivers a specific capacitance up to 169 F g(-1) with surface-normalized capacitance close to 21 µF cm(-2) (intrinsic capacitance) and power density up to 7.5 kW kg(-1), in 6 m KOH aqueous electrolyte. In the case of lithium-ion battery anode, it shows remarkable advantages in terms of the initiate reversible Coulombic efficiency (61.3%), high specific capacity (932 mAh g(-1) at 100 mA g(-1)), and robust long-term retention (93.5% after 600 cycles at 2000 mAh g(-1)).

10.
Adv Mater ; 27(19): 3053-9, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25866261

RESUMO

By combining a graphene layer and aligned multiwalled carbon nanotube (MWNT) sheets in two different configurations, i) graphene on the top of MWNTs and ii) MWNTs on the top of the graphene, it is demonstrated that optical, electrical, and electromechanical properties of the resulting hybrid films depend on configurations.

11.
Small ; 10(16): 3405-11, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24789173

RESUMO

The electrical conductivity and the specific surface area of conductive fillers in conductor-insulator composite films can drastically improve the dielectric performance of those films through changing their polarization density by interfacial polarization. We have made a polymer composite film with a hybrid conductive filler material made of carbon nanotubes grown onto reduced graphene oxide platelets (rG-O/CNT). We report the effect of the rG-O/CNT hybrid filler on the dielectric performance of the composite film. The composite film had a dielectric constant of 32 with a dielectric loss of 0.051 at 0.062 wt% rG-O/CNT filler and 100 Hz, while the neat polymer film gave a dielectric constant of 15 with a dielectric loss of 0.036. This is attributed to the increased electrical conductivity and specific surface area of the rG-O/CNT hybrid filler, which results in an increase in interfacial polarization density between the hybrid filler and the polymer.

12.
Small ; 10(4): 694-8, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24106080

RESUMO

Electrochemical delamination is developed to transfer graphene for plastic electronics. The use of a sacrificial support during transfer is eliminated by depositing the target polyimide substrate directly onto graphene. A continuous and residue-free graphene surface with less line disruptions (such as ripples and wrinkles) is obtained on the target polyimide substrate, and good mechanical durability as well as low sheet resistance is obtained. The properties are competitive with conventional transparent conducting films.

13.
ACS Nano ; 8(1): 269-74, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24303963

RESUMO

We have devised a dielectric film with a chemical vapor deposited graphene interlayer and studied the effect of the graphene interlayer on the dielectric performance. The highly transparent and flexible film was a polymer/graphene/polymer 'sandwich-structure' fabricated by a one-step transfer method that had a dielectric constant of 51, with a dielectric loss of 0.05 at 1 kHz. The graphene interlayer in the film forms a space charge layer, i.e., an accumulation of polarized charge carriers near the graphene, resulting in an induced space charge polarization and enhanced dielectric constant. The characteristic of the space charge layer for the graphene dielectric film, the sheet resistance of the graphene interlayer, was adjusted through thermal annealing that caused partial oxidation. The dielectric film with higher sheet resistance due to the oxidized graphene interlayer had a significantly lower dielectric constant compared to that with the graphene with lower interlayer sheet resistance. Oxidizing the graphene interlayer yields a smaller and thinner space charge density in the dielectric film, ultimately leading to decreased capacitance. Considering the simplicity of the fabrication process and high dielectric performance, as well as the high transparency and flexibility, this film is promising for applications in plastic electronics.

14.
ACS Nano ; 7(9): 7495-9, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23930903

RESUMO

Scaling graphene growth using an oven to heat large substrates becomes less energy efficient as system size is increased. We report a route to graphene synthesis in which radio frequency (RF) magnetic fields inductively heat metal foils, yielding graphene of quality comparable to or higher than that of current chemical vapor deposition techniques. RF induction heating allows for rapid temperature ramp up/down, with great potential for large scale and rapid manufacturing of graphene with much better energy efficiency. Back-gated field effect transistors on a SiO2/Si substrate showed carrier mobility up to ∼14 000 cm(2) V(-1) s(-1) measured under ambient conditions. Many advantages of RF heating are outlined, and some fundamental aspects of this approach are discussed.


Assuntos
Cobre/química , Grafite/síntese química , Calefação/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Teste de Materiais , Tamanho da Partícula , Ondas de Rádio
16.
ACS Nano ; 7(2): 1811-6, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23383736

RESUMO

Hybrid films composed of reduced graphene oxide (RG-O) and Cu nanowires (NWs) were prepared. Compared to Cu NW films, the RG-O/Cu NW hybrid films have improved electrical conductivity, oxidation resistance, substrate adhesion, and stability in harsh environments. The RG-O/Cu NW films were used as transparent electrodes in Prussian blue (PB)-based electrochromic devices where they performed significantly better than pure Cu NW films.

17.
Nano Lett ; 13(3): 1111-7, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23398172

RESUMO

Graphene is widely known for its anomalously strong broadband optical absorptivity of 2.3% that enables seeing its single-atom layer with the naked eye. However, in the mid-infrared part of the spectrum graphene represents a quintessential lossless zero-volume plasmonic material. We experimentally demonstrate that, when integrated with Fano-resonant plasmonic metasurfaces, single-layer graphene (SLG) can be used to tune their mid-infrared optical response. SLG's plasmonic response is shown to induce large blue shifts of the metasurface's resonance without reducing its spectral sharpness. This effect is explained by a generalized perturbation theory of SLG-metamaterial interaction that accounts for two unique properties of the SLG that set it apart from all other plasmonic materials: its anisotropic response and zero volume. These results pave the way to using gated SLG as a platform for dynamical spectral tuning of infrared metamaterials and metasurfaces.

18.
Nano Lett ; 12(11): 5679-83, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23083055

RESUMO

Polycrystalline graphene grown by chemical vapor deposition (CVD) on metals and transferred onto arbitrary substrates has line defects and disruptions such as wrinkles, ripples, and folding that adversely affect graphene transport properties through the scattering of the charge carriers. It is found that graphene assembled with metal nanowires (NWs) dramatically decreases the resistance of graphene films. Graphene/NW films with a sheet resistance comparable to that of the intrinsic resistance of graphene have been obtained and tested as a transparent electrode replacing indium tin oxide films in electrochromic (EC) devices. The successful integration of such graphene/NW films into EC devices demonstrates their potential for a wide range of optoelectronic device applications.

19.
ACS Nano ; 6(6): 5157-63, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22519712

RESUMO

Here, we demonstrate that the assembly of nanostructures with different dimensionalities yields "multicomponent hybrid" transparent conductive films (TCFs) with sheet resistance and optical transmittance comparable to that of indium tin oxide (ITO) films. It was shown that sheet resistance of single-component Ag nanowire (NW) films can be further decreased by introducing gold-decorated reduced graphene oxide (RG-O) nanoplatelets that bridge the closely located noncontacting metal NWs. RG-O nanoplatelets can act as a protective and adhesive layer for underneath metal NWs, resulting in better performance of hybrid TCFs compared to single-component TCFs. Additionally, these hybrid TCFs possess antibacterial properties, demonstrating their multifunctional characteristics that might have a potential for biomedical device applications. Further development of this strategy paves a way toward next generation TCFs composed of different nanostructures and characterized by multiple (or additional) functionalities.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Membranas Artificiais , Nanopartículas/administração & dosagem , Nanopartículas/química , Antibacterianos/farmacologia , Condutividade Elétrica , Teste de Materiais , Refratometria
20.
ACS Nano ; 6(3): 2471-6, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22339048

RESUMO

A two-step CVD route with toluene as the carbon precursor was used to grow continuous large-area monolayer graphene films on a very flat, electropolished Cu foil surface at 600 °C, lower than any temperature reported to date for growing continuous monolayer graphene. Graphene coverage is higher on the surface of electropolished Cu foil than that on the unelectropolished one under the same growth conditions. The measured hole and electron mobilities of the monolayer graphene grown at 600 °C were 811 and 190 cm(2)/(V·s), respectively, and the shift of the Dirac point was 18 V. The asymmetry in carrier mobilities can be attributed to extrinsic doping during the growth or transfer. The optical transmittance of graphene at 550 nm was 97.33%, confirming it was a monolayer, and the sheet resistance was ~8.02 × 10(3) Ω/□.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA