Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445416

RESUMO

The antioxidant and anti-inflammatory potentials of polyphenols contained in Gynura procumbens (GP) extract were systematically analyzed. Polyphenols in GP were analyzed for nine peaks using high-performance liquid chromatography (HPLC) combined with mass spectrometry (MS), and quantitatively determined through each standard. A total of nine polyphenolic compounds were identified in the samples and their MS data were tabulated. To determine the potential of bioactive ingredients targeting DPPH and COX-2, we analyzed them by ultrafiltration combined with LC. The results identified the major compounds exhibiting binding affinity for DPPH and COX-2. Caffeic acid, kynurenic acid, and chlorogenic acid showed excellent binding affinity to DPPH and COX-2, suggesting that they can be considered as major active compounds. Additionally, the anti-inflammatory effect of GP was confirmed in vitro. This study will not only be used to provide basic data for the application of GP to the food and pharmaceutical industries, but will also provide information on effective screening methods for other medicinal plants.


Assuntos
Anti-Inflamatórios/análise , Antioxidantes/análise , Asteraceae/química , Ciclo-Oxigenase 2/metabolismo , Polifenóis/análise , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Compostos de Bifenilo/metabolismo , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Lipopolissacarídeos/efeitos adversos , Espectrometria de Massas , Camundongos , Picratos/metabolismo , Extratos Vegetais/química , Polifenóis/farmacologia , Células RAW 264.7
2.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445559

RESUMO

Scutellarein (SCU) is a well-known flavone with a broad range of biological activities against several cancers. Human hepatocellular carcinoma (HCC) is major cancer type due to its poor prognosis even after treatment with chemotherapeutic drugs, which causes a variety of side effects in patients. Therefore, efforts have been made to develop effective biomarkers in the treatment of HCC in order to improve therapeutic outcomes using natural based agents. The current study used SCU as a treatment approach against HCC using the HepG2 cell line. Based on the cell viability assessment up to a 200 µM concentration of SCU, three low-toxic concentrations of (25, 50, and 100) µM were adopted for further investigation. SCU induced cell cycle arrest at the G2/M phase and inhibited cell migration and proliferation in HepG2 cells in a dose-dependent manner. Furthermore, increased PTEN expression by SCU led to the subsequent downregulation of PI3K/Akt/NF-κB signaling pathway related proteins. In addition, SCU regulated the metastasis with EMT and migration-related proteins in HepG2 cells. In summary, SCU inhibits cell proliferation and metastasis in HepG2 cells through PI3K/Akt/NF-κB signaling by upregulation of PTEN, suggesting that SCU might be used as a potential agent for HCC therapy.


Assuntos
Apigenina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Tumorais Cultivadas
3.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068568

RESUMO

Iridin is a natural flavonoid found in Belamcanda chinensis documented for its broad spectrum of biological activities like antioxidant, antitumor, and antiproliferative effects. In the present study, we have investigated the antitumor potential of iridin in AGS gastric cancer cells. Iridin treatment decreases AGS cell growth and promotes G2/M phase cell cycle arrest by attenuating the expression of Cdc25C, CDK1, and Cyclin B1 proteins. Iridin-treatment also triggered apoptotic cell death in AGS cells, which was verified by cleaved Caspase-3 (Cl- Caspase-3) and poly ADP-ribose polymerase (PARP) protein expression. Further apoptotic cell death was confirmed by increased apoptotic cell death fraction shown in allophycocyanin (APC)/Annexin V and propidium iodide staining. Iridin also increased the expression of extrinsic apoptotic pathway proteins like Fas, FasL, and cleaved Caspase-8 in AGS cells. On the contrary, iridin-treated AGS cells did not show variations in proteins related to an intrinsic apoptotic pathway such as Bax and Bcl-xL. Besides, Iridin showed inhibition of PI3K/AKT signaling pathways by downregulation of (p-PI3K, p-AKT) proteins in AGS cells. In conclusion, these data suggest that iridin has anticancer potential by inhibiting PI3K/AKT pathway. It could be a basis for further drug design in gastric cancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/química , Humanos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066541

RESUMO

Breast cancer is one of the major causes of deaths due to cancer, especially in women. The crucial barrier for breast cancer treatment is resistance to radiation therapy, one of the important local regional therapies. We previously established and characterized radio-resistant MDA-MB-231 breast cancer cells (RT-R-MDA-MB-231 cells) that harbor a high expression of cancer stem cells (CSCs) and the EMT phenotype. In this study, we performed antibody array analysis to identify the hub signaling mechanism for the radiation resistance of RT-R-MDA-MB-231 cells by comparing parental MDA-MB-231 (p-MDA-MB-231) and RT-R-MDA-MB-231 cells. Antibody array analysis unveiled that the MAPK1 protein was the most upregulated protein in RT-R-MDA-MB-231 cells compared to in p-MDA-MB-231 cells. The pathway enrichment analysis also revealed the presence of MAPK1 in almost all enriched pathways. Thus, we used an MEK/ERK inhibitor, PD98059, to block the MEK/ERK pathway and to identify the role of MAPK1 in the radio-resistance of RT-R-MDA-MB-231 cells. MEK/ERK inhibition induced cell death in both p-MDA-MB-231 and RT-R-MDA-MB-231 cells, but the death mechanism for each cell was different; p-MDA-MB-231 cells underwent apoptosis, showing cell shrinkage and PARP-1 cleavage, while RT-R-MDA-MB-231 cells underwent necroptosis, showing mitochondrial dissipation, nuclear swelling, and an increase in the expressions of CypA and AIF. In addition, MEK/ERK inhibition reversed the radio-resistance of RT-R-MDA-MB-231 cells and suppressed the increased expression of CSC markers (CD44 and OCT3/4) and the EMT phenotype (ß-catenin and N-cadherin/E-cadherin). Taken together, this study suggests that activated ERK signaling is one of the major hub signals related to the radio-resistance of MDA-MB-231 breast cancer cells.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/radioterapia , Sistema de Sinalização das MAP Quinases , Tolerância a Radiação , Apoptose/efeitos dos fármacos , Fator de Indução de Apoptose/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Ciclofilina A/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Poli(ADP-Ribose) Polimerases/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Tolerância a Radiação/efeitos dos fármacos
5.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809701

RESUMO

Evidence suggests that augmented expression of a certain gene can influence the efficacy of targeted and conventional chemotherapies. Here, we tested whether the high expression of enhancer of the rudimentary homolog (ERH), which serves as a prognostic factor in some cancers, can influence the efficacy of anthocyanins isolated from fruits of Vitis coignetiae Pulliat, Meoru in Korea (AIMs) on human gastric cancer cells. The anticancer efficacy of AIMs was augmented in ERH-transfected MKN28 cells (E-MKN28 cells). Molecularly, ERH augmented AIM-induced caspase-dependent apoptosis by activating caspase-3 and -9. The ERH-augmented apoptotic effect was related to mitochondrial depolarization and inhibition of antiapoptotic proteins, XIAP, and Bcl-2. In addition, reactive oxygen species (ROS) generation was augmented in AIMs-treated E-MKN28 cells compared to AIMs-treated naïve MKN28 cells. In conclusion, ERH augmented AIM-induced caspase-dependent mitochondrial-related apoptosis in MKN28 cells. A decrease in expression of Bcl-2 and subsequent excessive ROS generation would be the mechanism for ERH-augmented mitochondrial-related apoptosis in AIMs-treated MKN28 cells. A decrease in expression of XIAP would be another mechanism for ERH-augmented caspase-dependent apoptosis in AIMs-treated MKN28 cells.


Assuntos
Antocianinas/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/metabolismo , Vitis/química , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/patologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
6.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573023

RESUMO

c-Jun N-terminal kinase (JNK) is activated by chemotherapeutic reagents including natural plant polyphenols, and cell fate is determined by activated phospho-JNK as survival or death depending on stimuli and cell types. The purpose of this study was to elucidate the role of JNK on the anticancer effects of the Korean plant Artemisia annua L. (pKAL) polyphenols in p53 wild-type HCT116 human colorectal cancer cells. Cell morphology, protein expression levels, apoptosis/necrosis, reactive oxygen species (ROS), acidic vesicles, and granularity/DNA content were analyzed by phase-contrast microscopy; Western blot; and flow cytometry of annexin V/propidium iodide (PI)-, dichlorofluorescein (DCF)-, acridine orange (AO)-, and side scatter pulse height (SSC-H)/DNA content (PI)-stained cells. The results showed that pKAL induced morphological changes and necrosis or late apoptosis, which were associated with loss of plasma membrane/Golgi integrity, increased acidic vesicles and intracellular granularity, and decreased DNA content through downregulation of protein kinase B (Akt)/ß-catenin/cyclophilin A/Golgi matrix protein 130 (GM130) and upregulation of phosphorylation of H2AX at Ser-139 (γ-H2AX)/p53/p21/Bak cleavage/phospho-JNK/p62/microtubule-associated protein 1 light chain 3B (LC3B)-I. Moreover, JNK inhibition by SP600125 enhanced ROS-independently pKAL-induced cell death through downregulation of p62 and upregulation of p53/p21/Bak cleavage despite a reduced state of DNA damage marker γ-H2AX. These findings indicate that phospho-JNK activated by pKAL inhibits p53-dependent cell death signaling and enhances DNA damage signaling, but cell fate is determined by phospho-JNK as survival rather than death in p53 wild-type HCT116 cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Artemisia annua , Neoplasias Colorretais/tratamento farmacológico , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Polifenóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos Fitogênicos/química , Artemisia annua/química , Morte Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Células HCT116 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Polifenóis/química , Inibidores de Proteínas Quinases/química , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297377

RESUMO

Plant-derived natural polyphenols exhibit anticancer activity without showing any noticeable toxicities to normal cells. The aim of this study was to investigate the role of p53 on the anticancer effect of polyphenols isolated from Korean Artemisia annua L. (pKAL) in HCT116 human colorectal cancer cells. We confirmed that pKAL induced reactive oxygen species (ROS) production, propidium iodide (PI) uptake, nuclear structure change, and acidic vesicles in a p53-independent manner in p53-null HCT116 cells through fluorescence microscopy analysis of DCF/PI-, DAPI-, and AO-stained cells. The pKAL-induced anticancer effects were found to be significantly higher in p53-wild HCT116 cells than in p53-null by hematoxylin staining, CCK-8 assay, Western blot, and flow cytometric analysis of annexin V/PI-stained cells. In addition, expression of ectopic p53 in p53-null cells was upregulated by pKAL in both the nucleus and cytoplasm, increasing pKAL-induced cell death. Moreover, Western bot analysis revealed that pKAL-induced cell death was associated with upregulation of p53-dependent targets such as p21, Bax and DR5 and cleavage of PARP1 and lamin A/C in p53-wild HCT116 cells, but not in p53-null. Taken together, these results indicate that p53 plays an important role in enhancing the anticancer effects of pKAL by upregulating p53 downstream targets and inducing intracellular cell death processes.


Assuntos
Antineoplásicos/toxicidade , Morte Celular , Polifenóis/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Artemisia annua/química , Células HCT116 , Humanos , Laminas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteólise , Regulação para Cima
8.
Molecules ; 25(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233701

RESUMO

We previously demonstrated that anthocyanins from the fruits of Vitis coignetiae Pulliat (AIMs) induced the apoptosis of hepatocellular carcinoma cells. However, many researchers argued that the concentrations of AIMs were too high for in vivo experiments. Therefore, we performed in vitro at lower concentrations and in vivo experiments for the anti-cancer effects of AIMs. AIMs inhibited the cell proliferation of Hep3B cells in a dose-dependent manner with a maximum concentration of 100 µg/mL. AIMs also inhibited the invasion and migration at 100 µg/mL concentration with or without the presence of TNF-α. To establish the relevance between the in vitro and in vivo results, we validated their effects in a Xenograft model of Hep3B human hepatocellular carcinoma cells. In the in vivo test, AIMs inhibited the tumorigenicity of Hep3B cells in the xenograft mouse model without showing any clinical signs of toxicity or any changes in the body weight of mice. AIMs inhibited the activation NF-κB and suppressed the NF-κB-regulated proteins, intra-tumoral microvessel density (IMVD) and the Ki67 activity of Hep3B xenograft tumors in athymic nude mice. In conclusion, this study indicates that AIMs have anti-cancer effects (inhibition of proliferation, invasion, and angiogenesis) on human hepatocellular carcinoma xenograft through the inhibition of NF-κB and its target protein.


Assuntos
Antocianinas/farmacologia , Antineoplásicos Fitogênicos/farmacologia , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vitis/química , Animais , Antocianinas/química , Antineoplásicos Fitogênicos/química , Biomarcadores , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Nus , Extratos Vegetais/química , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nutrients ; 12(11)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114438

RESUMO

Inflammation of the skin is the most common dermatological problem in human. The anti-inflammatory mediated responses of the skin cells provide a mechanism for combating these conditions. Annexin A1 (AnxA1) is one of the proteins that has been shown to have a potent anti-inflammatory effect. However, the effects and mechanisms of AnxA1 in skin keratinocyte and fibroblast have not been reported yet. In the current study, we hypothesized that Ac2-26, AnxA1 mimetic peptide, ameliorates inflammation and wrinkle formation in human skin cells. Therefore, we aimed to identify whether Ac2-26 has anti-inflammatory and anti-wrinkle effects in human keratinocyte (HaCaT) and fibroblast (Detroit 551) cells, respectively. Human HaCaT cells were stimulated by TNF-α/IFN-γ with or without Ac2-26, to identify the anti-inflammatory effect. Human Detroit 551 cells were treated with Ac2-26 to verify the anti-wrinkle effect. Initially, cell cytotoxicity was carried out in each cell line treated using Ac2-26 by MTT assay. Human MDA, IL-8, and procollagen secretion were detected by ELISA assay. The inflammatory chemokines were measured by qRT-PCR analysis. To demonstrate the mechanism, MAPK, NF-κB, JAK/STAT, and MMPs were analyzed by Western blotting. As a result, we identified that Ac2-26 significantly decreased the expression of TNF-α/IFN-γ-stimulated pro-inflammatory chemokines, including IL-1ß, IL-6, IL-8, MDC, TARC, and TNF-α, by inhibiting the activation of MAPK, NF-κB, and JAK/STAT pathway in TNF-α/IFN-γ-stimulated HaCaT human keratinocytes. In addition, we also identified that Ac2-26 significantly induced collagen synthesis by generating pro-collagen, and suppressed collagen degradation by inhibiting the collagenase MMP-1 and MMP-8 expression. Collectively, these results suggest that Ac2-26 shows anti-inflammatory and anti-wrinkling effect. These effects may lead to the development of preventive and therapeutic application for inflammation-related skin disease and wrinkle formation.


Assuntos
Anexina A1/farmacologia , Anti-Inflamatórios/farmacologia , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Peptídeos/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Western Blotting , Linhagem Celular , Quimiocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Interleucina-8/metabolismo , Pró-Colágeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Nutrients ; 12(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824273

RESUMO

Sinensetin (SIN) has been reported to exhibit anti-inflammatory and anti-cancer activity. However, the cellular and molecular mechanism by which SIN promotes hepatocellular carcinoma (HCC) cell death remains unclear. In the present study, we investigated the induction of cell death by SIN and its underlying mechanism in HepG2 cells, an HCC cell line. We found that SIN significantly induced cell death in HepG2 cells, whereas the proliferation rate of Thle2, human liver epithelial cells, was unaffected by SIN. SIN-treated HepG2 cells were not affected by apoptotic cell death; instead, autophagic cell death was induced through the p53-mediated AMPK/mTOR signaling pathway. Inhibition of p53 degradation led to both autophagy and apoptosis in HepG2 cells. p53 translocation led to SIN-induced autophagy, whereas p53 translocation inhibited SIN-induced apoptosis. However, SIN showed apoptosis in the p53-mutant Hep3B cell line. Molecular docking simulation of the p53 core domain showed effective binding with SIN, which was found significant compared with the known p53 activator, RITA. Collectively, these data suggest that SIN may be a potential anti-cancer agent targeting autophagic cell death in human liver cancer.


Assuntos
Antineoplásicos/farmacologia , Morte Celular Autofágica/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Flavonoides/farmacologia , Neoplasias Hepáticas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular/métodos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo
11.
Molecules ; 25(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784919

RESUMO

Anthocyanins isolated from Vitis coignetiae Pulliat (Meoru in Korea) (AIMs) have various anti-cancer properties by inhibiting Akt and NF-κB which are involved in drug resistance. Cisplatin (CDDP) is one of the popular anti-cancer agents. Studies reported that MCF-7 human breast cancer cells have high resistance to CDDP compared to other breast cancer cell lines. In this study, we confirmed CDDP resistance of MCF-7 cells and tested whether AIMs can overcome CDDP resistance of MCF-7 cells. Cell viability assay revealed that MCF-7 cells were more resistant to CDDP treatment than MDA-MB-231 breast cancer cells exhibiting aggressive and high cancer stem cell phenotype. AIMs significantly augmented the efficacy of CDDP with synergistic effects on MCF-7 cells. Molecularly, Western blot analysis revealed that CDDP strongly increased Akt and moderately reduced p-NF-κB and p-IκB and that AIMs inhibited CDDP-induced Akt activation, and augmented CDDP-induced reduction of p-NF-κB and p-IκB in MCF-7 cells. In addition, AIMs significantly downregulated an anti-apoptotic protein, XIAP, and augmented PARP-1 cleavage in CDDP-treated MCF-7 cells. Moreover, under TNF-α treatment, AIMs augmented CDDP efficacy with inhibition of NF-κB activation on MCF-7 cells. In conclusion, AIMs enhanced CDDP sensitivity by inhibiting Akt and NF-κB activity of MCF-7 cells that show relative intrinsic CDDP resistance.


Assuntos
Antocianinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vitis/química , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Tumorais Cultivadas
12.
Biomolecules ; 10(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708333

RESUMO

Gastric cancer is the common type of malignancy positioned at second in mortality rate causing burden worldwide with increasing treatment options. Prunetin (PRU) is an O-methylated flavonoid that belongs to the group of isoflavone executing beneficial activities. In the present study, we investigated the anti-proliferative and cell death effect of the compound PRU in AGS gastric cancer cell line. The in vitro cytotoxic potential of PRU was evaluated and significant proliferation was observed. We identified that the mechanism of cell death was due to necroptosis through double staining and was confirmed by co-treatment with inhibitor necrostatin (Nec-1). We further elucidated the mechanism of action of necroptosis via receptor interacting protein kinase 3 (RIPK3) protein expression and it has been attributed by ROS generation through JNK activation. Furthermore, through computational analysis by molecular docking and dynamics simulation, the efficiency of compound prunetin against RIPK3 binding was validated. In addition, we also briefed the pharmacokinetic properties of the compound by in silico ADMET analysis.


Assuntos
Antineoplásicos/farmacologia , Isoflavonas/farmacologia , Necroptose/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Neoplasias Gástricas/metabolismo
13.
Oncol Rep ; 44(3): 939-958, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32705238

RESUMO

Scutellarein (SCU), a flavone that belongs to the flavonoid family and abundantly present in Scutellaria baicalensis a flowering plant in the family Lamiaceae, has been reported to exhibit anticancer effects in several cancer cell lines including gastric cancer (GC). Although our previous study documented the mechanisms of Scutellarein­induced cytotoxic effects, the literature shows that the proteomic changes that are associated with the cellular response to SCU have been poorly understood. To avoid adverse side­effects and significant toxicity of chemotherapy in patients who react poorly, biomarkers anticipating therapeutic responses are imperative. In the present study, we utilized a comparative proteomic analysis to identify proteins associated with Scutellarein (SCU)­induced cell death in GC cells (AGS and SNU484), by integrating two­dimensional gel electrophoresis (2­DE), mass spectrometry (MS), and bioinformatics to analyze the proteins. Proteomic analysis between SCU­treated and DMSO (control) samples successfully identified 41 (AGS) and 31 (SNU484) proteins by MALDI­TOF/MS analysis and protein database search. Comparative proteomics analysis between AGS and SNU484 cells treated with SCU revealed a total of 7 protein identities commonly expressed and western blot analysis validated a subset of identified critical proteins, which were consistent with those of the 2­DE outcome. Molecular docking studies also confirmed the binding affinity of SCU towards these critical proteins. Phosphatidylinositol 4,5­bisphosphate 3­kinase catalytic subunit ß isoform (PIK3CB) protein expression was accompanied by a distinct group of cellular functions, including cell growth, and proliferation. Cancerous inhibitor of protein phosphatase 2A (CIP2A), is one of the oncogenic molecules that have been shown to promote tumor growth and resistance to apoptosis and senescence­inducing therapies. In the present study, both PIK3CB and CIP2A proteins were downregulated in SCU­treated cells, which boosts our previous results of SCU to induce apoptosis and inhibits GC cell growth by regulating these critical proteins. The comparative proteomic analysis has yielded candidate biomarkers of response to SCU treatment in GC cell models and further validation of these biomarkers will help the future clinical development of SCU as a novel therapeutic drug.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apigenina/farmacologia , Biomarcadores Tumorais/genética , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos Fitogênicos/uso terapêutico , Apigenina/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Autoantígenos/análise , Autoantígenos/genética , Autoantígenos/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Classe I de Fosfatidilinositol 3-Quinases/análise , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteômica , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
14.
Biomolecules ; 10(6)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512851

RESUMO

DDX3 belongs to RNA helicase family that demonstrates oncogenic properties and has gained wider attention due to its role in cancer progression, proliferation and transformation. Mounting reports have evidenced the role of DDX3 in cancers making it a promising target to abrogate DDX3 triggered cancers. Dual pharmacophore models were generated and were subsequently validated. They were used as 3D queries to screen the InterBioScreen database, resulting in the selection of curcumin that was escalated to molecular dynamics simulation studies. In vitro anti-cancer analysis was conducted on three cell lines such as MCF-7, MDA-MB-231 and HeLa, which were evaluated along with exemestane. Curcumin was docked into the active site of the protein target (PDB code 2I4I) to estimate the binding affinity. The compound has interacted with two key residues and has displayed stable molecular dynamics simulation results. In vitro analysis has demonstrated that both the candidate compounds have reduced the expression of DDX3 in three cell lines. However, upon combinatorial treatment of curcumin (10 and 20 µM) and exemestane (50 µM) a synergism was exhibited, strikingly downregulating the DDX3 expression and has enhanced apoptosis in three cell lines. The obtained results illuminate the use of curcumin as an alternative DDX3 inhibitor and can serve as a chemical scaffold to design new small molecules.


Assuntos
Androstadienos/farmacologia , Curcumina/farmacologia , RNA Helicases DEAD-box/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Androstadienos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Células Tumorais Cultivadas
15.
J Nutr Biochem ; 83: 108427, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32559585

RESUMO

Apigetrin is a flavonoid glycoside phytonutrient derived from fruits and vegetables that is well known for a variety of biological activities such as antioxidant and anti-inflammatory activities. In the current study, we determined the effect of apigetrin on AGS gastric cancer cell. Apigetrin reduced cancer cell proliferation and induced G2/M phase cell cycle arrest by regulating cyclin B1, cdc25c and cdk1 protein expression in AGS cell. Apigetrin treatment caused apoptotic cell death in AGS cells, characterized by the accumulation of apoptosis portion, cleavage of caspase-3 and poly ADP-ribose polymerase (PARP). Apigetrin-treated cells increased the expression of extrinsic apoptosis pathway proteins and mRNA. However, intrinsic apoptosis pathway related proteins were not altered. In addition, AGS cells treated with apigetrin increased autophagic cell death, featured by the formation of autophagic vacuole and acidic vesicular organelles. Autophagy marker proteins, such as LC3B-II and beclin-1, were increased, and p62, an autophagy flux marker protein, was also increased by endoplasmic reticulum stress. Also, the phosphorylation of PI3K/AKT/mTOR pathway proteins and its downstream targets in apigetrin-treated AGS cells was identified to be decreased. Taken together, these data suggest that apigetrin-treated AGS cells induced G2/M phase cell cycle arrest, extrinsic apoptosis and autophagic cell death through PI3K/AKT/mTOR pathway, which can lead to the inhibition of gastric cancer development. Thus, our findings strongly indicate that apigetrin is a basic natural derived compound that could be used as a nutrient source with potential anticancer activities against gastric cancer.


Assuntos
Apigenina/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinases TOR/genética
16.
Molecules ; 25(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455624

RESUMO

Vitis coignetiae Pulliat (Meoru in Korea) has been used in Korean folk medicine for the treatment of inflammatory diseases and cancers. Evidence suggests that NF-κB activation is mainly involved in cancer cell proliferation, invasion, angiogenesis, and metastasis. TNF-α also enhances the inflammatory process in tumor development. Recently, flavonoids from plants have been reported to have inhibitory effects on NF-κB activities. We investigated the effects of anthocyanins extracted from the fruits of Vitis coignetiae Pulliat (AIM, anthocyanins isolated from Meoru (AIM)) on TNF-α-induced NF-κB activities in MCF-7 human breast cancer cells and the molecules involved in AIM-induced anti-cancer effects, especially on cancer metastasis. We performed cell viability assay, gelatin zymography, invasion assay, and western blot analysis to unravel the anti-NF-κB activity of AIMs on MCF-7 cells. AIM suppressed the TNF-α effects on the NF-κB-regulated proteins involved in cancer cell proliferation (COX-2, C-myc), invasion, and angiogenesis (MMP-2, MMP9, ICAM-1, and VEGF). AIM also increased the expression of E-cadherin, which is one of the hallmarks of the epithelial-mesenchymal transition (EMT) process. In conclusion, this study demonstrates that the anthocyanins isolated from the fruits of Vitis coignetiae Pulliat acts as an inhibitor of TNF-α induced NF-κB activation, and subsequent downstream molecules involved in cancer proliferation, invasion, adhesion, angiogenesis, and thus have anti-metastatic activities in MCF-7 breast cancer cells.


Assuntos
Antocianinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Vitis/química , Antocianinas/química , Antocianinas/isolamento & purificação , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Frutas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , NF-kappa B/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/genética
17.
Am J Chin Med ; 48(3): 679-702, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32329644

RESUMO

Autophagy is a process of active programmed cell death, where a dying cell induces autophagosomes and subsequently regulated by degradative machinery. The aim of this study was to investigate the mechanism behind induction of autophagic cell death by Naringin flavonoid in AGS cancer cells. Growth inhibition of AGS cells showed downregulation of PI3K/Akt/mTOR signaling by Naringin treatment. Transmission electron microscopy observation showed swollen mitochondria and lysosome near peri-nuclear zone fused with autophagic vacuoles. Rapamycin pre-treatment with Naringin showed significant decrease in mTOR phosphorylation and increase in LC3B activation in AGS cells. Decrease in mTOR phosphorylation is associated with lysosomal function activation was observed by time-dependent treatment of Naringin. Induction of lysosomal membrane permeabilization (LMP) was observed by LAMP1 activation leading lysosomal cell death by releasing Cathepsin D from lysosomal lumen to cytosol. Naringin treated AGS cells showed up-regulating BH3 domain Bad, down-regulating Bcl-xL, and Bad phosphorylation and significant mitochondrial fluorescence intensity expression. Significant localization of mitochondria and LC3B activation was examined by person coefficient correlation. Activation of ERK1/2-p38 MAPKs and production of intracellular ROS has been observed over Naringin treatment. It has also been elucidated that pre-treatment with NAC inhibited mitochondria-LC3B colocalization, where ROS acted as upstream of ERK1/2-p38 MAPKs activation. Lysosomal cell death involvement has been evaluated by BAF A1 pre-treatment, inhibiting LAMP1, Cathepsin D, ROS, and blocking autophagolysosome in AGS cell death. Taken together, these findings show that, Naringin induced autophagy cell death involves LMP mediated lysosomal damage and BH3 protein Bad activation in AGS cancer cells.


Assuntos
Autofagia/efeitos dos fármacos , Flavanonas/farmacologia , Lisossomos/patologia , Neoplasias Gástricas/patologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
18.
Molecules ; 25(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326231

RESUMO

Artemisia annua L. has been reported to show anti-cancer activities. Here, we determined whether polyphenols extracted from Artemisia annua L. (pKAL) exhibit anti-cancer effects on radio-resistant MDA-MB-231 human breast cancer cells (RT-R-MDA-MB-231 cells), and further explored their molecular mechanisms. Cell viability assay and colony-forming assay revealed that pKAL inhibited cell proliferation on both parental and RT-R-MDA-MB-231 cells in a dose-dependent manner. The anti-proliferative effects of pKAL on RT-R-MDA-MB-231 cells were superior or similar to those on parental ones. Western blot analysis revealed that expressions of cluster of differentiation 44 (CD44) and Oct 3/4, matrix metalloproteinase-9 (MMP-9) and signal transducer and activator of transcription-3 (STAT-3) phosphorylation were significantly increased in RT-R-MDA-MB-231 cells compared to parental ones, suggesting that these proteins could be associated with RT resistance. pKAL inhibited the expression of CD44 and Oct 3/4 (CSC markers), and ß-catenin and MMP-9 as well as STAT-3 phosphorylation of RT-R-MDA-MB-231. Regarding upstream signaling, the JNK or JAK2 inhibitor could inhibit STAT-3 activation in RT-R-MDA-MB-231 cells, but not augmented pKAL-induced anti-cancer effects. These findings suggest that c-Jun N-terminal kinase (JNK) or Janus kinase 2 (JAK2)/STAT3 signaling are not closely related to the anti-cancer effects of pKAL. In conclusion, this study suggests that pKAL exhibit anti-cancer effects on RT-R-MDA-MB-231 cells by suppressing CD44 and Oct 3/4, ß-catenin and MMP-9, which appeared to be linked to RT resistance of RT-R-MDA-MB-231 cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Artemisia annua/química , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , beta Catenina/metabolismo , Antineoplásicos Fitogênicos/química , Biomarcadores , Biomarcadores Tumorais , Neoplasias da Mama , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Expressão Gênica , Humanos , Imunofenotipagem , Janus Quinase 2/metabolismo , Extratos Vegetais/química , Polifenóis/química , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Exp Ther Med ; 19(3): 2161-2170, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32104280

RESUMO

Inflammatory diseases are an important health concern and have a growing incidence worldwide. Thus, developing novel and safe drugs to treat these disorders remains an important pursuit. Artemisia iwayomogi, locally known as Dowijigi (DJ), is a perennial herb found primarily in Korea and is used to treat various diseases such as hepatitis, inflammation and immune disorders. In the present study, the anti-inflammatory effects of a polyphenolic extract from the DJ flower (PDJ) in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells were investigated. Cell cytotoxicity was assessed using the MTT assay. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) was measured by Griess and ELISA analysis, respectively. The expression levels of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX2) were examined by western blot analysis. Reverse transcription-quantitative PCR was performed to detect the mRNA expression levels of pro-inflammatory cytokines, including tumor necrosis factor α (TNFα), interleukin (IL)-6 and IL-1ß, as well as COX2 and iNOS. The production of NO and PGE2 was significantly decreased following treatment with PDJ. The mRNA expression levels of TNFα, IL-6, IL-1ß, COX2 and iNOS were significantly decreased in LPS-induced PDJ co-treated cells compared with the group treated with LPS alone. Western blot analysis indicated that PDJ downregulated the LPS-induced expression of iNOS and COX2, as well as the expression of NF-κB proteins. In conclusion, the present study demonstrated that PDJ exerted anti-inflammatory effects in LPS-induced macrophage cells by suppressing the NF-κB signaling pathway. Therefore, PDJ may be used as a potential therapeutic agent in inflammation.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31781269

RESUMO

The use of adipose-derived stem cells (ADSCs) to enhance wound healing and tissue regeneration is progressively being accepted. Proteomic profiling of cultured ADSCs by mass spectrometry (MS) is a valuable tool to determine the identity of the proteins involved in multiple pathways, which make these ADSCs unique. In the current study, Nano-LC-MS/MS analysis was implemented on the membrane-free stem cell component (MFSCC), and the MS analysis revealed the presence of 252 proteins, that are involved in several biological functions, like metabolic process, biological regulation, developmental process, cell proliferation, and many more. Furthermore, bioinformatic analyses of the identified proteins in MFSCC found them to be involved in versatile pathways, like integrin pathway and wound healing response-related pathways. In addition, we also investigated the anti-inflammatory effects of MFSCC on lipopolysaccharide (LPS) stimulated mouse macrophage (RAW264.7) cells. The cell cytotoxicity of MFSCC was measured using MTT and LDH assays, the production of nitric oxide (NO) was measured by the Griess assay, and the protein expression levels of inducible nitric oxide (iNOS) and cyclooxygenase (COX-2) were examined by western blot analysis. The results showed that MFSCC concentrations ranging from 0.1 to 3 µg/mL did not show any significant cytotoxicity in LPS-induced RAW264.7 cells. Treatment with MFSCC of LPS-stimulated RAW264.7 cells significantly suppressed the production of NO and the expression of iNOS and COX-2 proteins related to inflammation. The present findings lead to a better understanding of the therapeutic potential of MFSCC and strongly promote it for the future clinical development of novel non-cell-based stem cell therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...