Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576901

RESUMO

Transient ischemia in brains causes neuronal damage, gliosis, and blood-brain barrier (BBB) breakdown, which is related to ischemia-induced brain dysfunction. Populus species have various pharmacological properties including antioxidant and anti-inflammatory activities. In this study, we found that phenolic compounds were rich in Populus tomentiglandulosa extract and examined the effects of Populus tomentiglandulosa extract on neuronal damage/death, astrogliosis, and BBB breakdown in the striatum, which is related to motor behavior, following 15-min transient ischemia in the forebrain in gerbils. The gerbils were pre-treated with 50, 100, and 200 mg/kg of the extract. The latter showed significant effects against ischemia-reperfusion injury. Ischemia-induced hyperactivity using spontaneous motor activity test was significantly attenuated by the treatment. Striatal cells (neurons) were dead at five days after the ischemia; however, pre-treatment with the extract protected the striatal cells from ischemia/reperfusion injury. Ischemia-induced reactive astrogliosis was significantly alleviated, in particular, astrocyte end feet, which are a component of BBB, were significantly preserved. Immunoglobulin G, which is not found in intact brain parenchyma, was apparently shown (an indicator of extravasation) in striatal parenchyma at five days after the ischemia, but IgG leakage was dramatically attenuated in the parenchyma by the pre-treatment. Based on these findings, we suggest that Populus tomentiglandulosa extract rich in phenolic compounds can be employed as a pharmaceutical composition to develop a preventive material against brain ischemic injury.

2.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361744

RESUMO

Korean red pine (Pinus densiflora) belongs to the Genus Pinus, and its bark contains a great amount of naturally occurring phenolic compounds. Until now, few studies have been conducted to assess the neuroprotective effects of Pinus densiflora bark extract against brain ischemic injury. The aim of this study was to investigate the neuroprotective effects of pre-treatment with the extract in the hippocampus following 5-min transient forebrain ischemia in gerbils. Furthermore, this study examined the anti-inflammatory effect as a neuroprotective mechanism of the extract. Pinus densiflora bark was extracted by pure water (100 °C), and this extract was quantitatively analyzed and contained abundant polyphenols, flavonoids, and proanthocyanidins. The extract (25, 50, and 100 mg/kg) was orally administered once a day for seven days before the ischemia. In the gerbil hippocampus, death of the pyramidal neurons was found in the subfield cornu ammonis 1 (CA1) five days after the ischemia. This death was significantly attenuated by pre-treatment with 100 mg/kg, not 25 or 50 mg/kg, of the extract. The treatment with 100 mg/kg of the extract markedly inhibited the activation of microglia (microgliosis) and significantly decreased the expression of pro-inflammatory cytokines (interleukin 1ß and tumor necrosis factor α). In addition, the treatment significantly increased anti-inflammatory cytokines (interleukin 4 and interleukin 13). Taken together, this study clearly indicates that pre-treatment with 100 mg/kg of Pinus densiflora bark extract in gerbils can exert neuroprotection against brain ischemic injury by the attenuation of neuroinflammatory responses.


Assuntos
Anti-Inflamatórios/farmacologia , Isquemia Encefálica/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pinus/química , Prosencéfalo/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Flavonoides/química , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação , Interleucina-13/agonistas , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-4/agonistas , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fármacos Neuroprotetores/química , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Proantocianidinas/química , Proantocianidinas/farmacologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921375

RESUMO

It has been studied that the damage or death of neurons in the hippocampus is different according to hippocampal subregions, cornu ammonis 1-3 (CA1-3), after transient ischemia in the forebrain, showing that pyramidal neurons located in the subfield CA1 (CA1) are most vulnerable to this ischemia. Hyperthermia is a proven risk factor for brain ischemia and can develop more severe and extensive brain damage related with mortality rate. It is well known that heme oxygenase-1 (HO-1) activity and expression is increased by various stimuli in the brain, including hyperthermia. HO-1 can be either protective or deleterious in the central nervous system, and its roles depend on the expression levels of enzymes. In this study, we investigated the effects of hyperthermia during ischemia on HO-1 expression and neuronal damage/death in the hippocampus to examine the relationship between HO-1 and neuronal damage/death following 5-min transient ischemia in the forebrain using gerbils. Gerbils were assigned to four groups: (1) sham-operated gerbils with normothermia (Normo + sham group); (2) ischemia-operated gerbils with normothermia (Normo + ischemia group); (3) sham-operated gerbils with hyperthermia (39.5 ± 0.2 °C) during ischemia (Hyper + sham group); and (4) ischemia-operated gerbils with hyperthermia during ischemia (Hyper + ischemia group). HO-1 expression levels in CA1-3 of the Hyper + ischemia group were significantly higher than those in the Normo + ischemia group. HO-1 immunoreactivity in the Hyper + ischemia group was significantly increased in pyramidal neurons and astrocytes with time after ischemia, and the immunoreactivity was significantly higher than that in the Normo + ischemia group. In the Normo + Ischemia group, neuronal death was shown in pyramidal neurons located only in CA1 at 5 days after ischemia. However, in the Hyper + ischemia group, pyramidal neuronal death occurred in CA1-3 at 2 days after ischemia. Taken together, our findings showed that brain ischemic insult during hyperthermic condition brings up earlier and severer neuronal damage/death in the hippocampus, showing that HO-1 expression in neurons and astrocytes is different according to brain subregions and temperature condition. Based on these findings, we suggest that hyperthermia in patients with ischemic stroke must be taken into the consideration in the therapy.


Assuntos
Lesões Encefálicas/genética , Heme Oxigenase-1/genética , Hipocampo/metabolismo , Traumatismo por Reperfusão/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Gerbillinae/genética , Gerbillinae/metabolismo , Hipocampo/lesões , Hipocampo/fisiopatologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Traumatismo por Reperfusão/patologia
4.
Antioxidants (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924188

RESUMO

Salicin is a major natural compound of willow bark and displays diverse beneficial biological properties, such as antioxidant activity. However, little information available for the neuroprotective potential of salicin against ischemic brain injury has been reported. Thus, this study was performed to investigate the neuroprotective potential of salicin against ischemia and reperfusion (IR) injury and its mechanisms in the hippocampus using a gerbil model of 5-min transient ischemia (TI) in the forebrain, in which a massive loss (death) of pyramidal neurons cells occurred in the subfield Cornu Ammonis 1 (CA1) among the hippocampal subregions (CA1-3) at 5 days after TI. To examine neuroprotection by salicin, gerbils were pretreated with salicin alone or together with LY294002, which is a phosphatidylinositol 3-kinase (PI3K) inhibitor, once daily for 3 days before TI. Treatment with 20 mg/kg of salicin significantly protected CA1 pyramidal neurons against the ischemic injury. Treatment with 20 mg/kg of salicin significantly reduced the TI-induced increase in superoxide anion generation and lipid peroxidation in the CA1 pyramidal neurons after TI. The treatment also reinstated the TI-induced decrease in superoxide dismutases (SOD1 and SOD2), catalase, and glutathione peroxidase in the CA1 pyramidal cells after TI. Moreover, salicin treatment significantly elevated the levels of phosphorylation of Akt and glycogen synthase kinase-3ß (GSK3ß), which is a major downstream target of PI3K, in the ischemic CA1. Notably, the neuroprotective effect of salicin was abolished by LY294002. Taken together, these findings clearly indicate that salicin protects against ischemic brain injury by attenuating oxidative stress and activating the PI3K/Akt/GSK3ß pathway.

5.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918660

RESUMO

Angelica gigas Nakai root contains decursin which exerts beneficial properties such as anti-amnesic and anti-inflammatory activities. Until now, however, the neuroprotective effects of decursin against transient ischemic injury in the forebrain have been insufficiently investigated. Here, we revealed that post-treatment with decursin and the root extract saved pyramidal neurons in the hippocampus following transient ischemia for 5 min in gerbil forebrain. Through high-performance liquid chromatography, we defined that decursin was contained in the extract as 7.3 ± 0.2%. Based on this, we post-treated with 350 mg/kg of extract, which is the corresponding dosage of 25 mg/kg of decursin that exerted neuroprotection in gerbil hippocampus against the ischemia. In addition, behavioral tests were conducted to evaluate ischemia-induced dysfunctions via tests of spatial memory (by the 8-arm radial maze test) and learning memory (by the passive avoidance test), and post-treatment with the extract and decursin attenuated ischemia-induced memory impairments. Furthermore, we carried out histochemistry, immunohistochemistry, and double immunohistofluorescence. Pyramidal neurons located in the subfield cornu ammonis 1 (CA1) among the hippocampal subfields were dead at 5 days after the ischemia; however, treatment with the extract and decursin saved the pyramidal neurons after ischemia. Immunoglobulin G (IgG, an indicator of extravasation), which is not found in the parenchyma in normal brain tissue, was apparently shown in CA1 parenchyma from 2 days after the ischemia, but IgG leakage was dramatically attenuated in the CA1 parenchyma treated with the extract and decursin. Furthermore, astrocyte endfeet, which are a component of the blood-brain barrier (BBB), were severely damaged at 5 days after the ischemia; however, post-treatment with the extract and decursin dramatically attenuated the damage of the endfeet. In brief, therapeutic treatment of the extract of Angelica gigas Nakai root and decursin after 5 min transient forebrain ischemia protected hippocampal neurons from the ischemia, showing that ischemia-induced BBB leakage and damage of astrocyte endfeet was significantly attenuated by the extract and decursin. Based on these findings, we suggest that Angelica gigas Nakai root containing decursin can be employed as a pharmaceutical composition to develop a therapeutic strategy for brain ischemic injury.


Assuntos
Angelica/química , Astrócitos/patologia , Benzopiranos/uso terapêutico , Barreira Hematoencefálica/patologia , Butiratos/uso terapêutico , Ataque Isquêmico Transitório/patologia , Extratos Vegetais/uso terapêutico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Benzopiranos/química , Benzopiranos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Butiratos/química , Butiratos/farmacologia , Gerbillinae , Proteína Glial Fibrilar Ácida/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Imunoglobulina G/metabolismo , Masculino , Neuraminidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Padrões de Referência , Memória Espacial/efeitos dos fármacos
7.
Exp Ther Med ; 21(3): 183, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33488792

RESUMO

Erigeron annuus (L.) PERS. (EALP) and Clematis mandshurica RUPR. (CMR) have been used in traditional remedies due to their medicinal effects. Recently, we reported that pretreatment with 200 mg/kg of YES-10® (a combination of extracts from leaves of EALP and CMR) displayed neuroprotective effects against brain ischemia and reperfusion injury. The present study analyzed the major ingredients of YES-10® and investigated whether neuroprotection from YES-10® was dependent upon antioxidant effects in the cornu ammonis 1 (CA1) field in the gerbil hippocampus, after transient forebrain ischemia for 5 min. YES-10® was demonstrated to predominantly contain scutellarin and chlorogenic acid. Pretreatment with YES-10® significantly increased protein levels and the immunoreactivity of copper/zinc-superoxide dismutase (SOD1) and manganese-superoxide dismutase (SOD2) was in the pyramidal neurons of the hippocampal CA1 field when these were examined prior to transient ischemia induction. The increased SODs in CA1 pyramidal neurons following YES-10® treatment were maintained after ischemic injury. In this case, the CA1 pyramidal neurons were protected from ischemia-reperfusion injury. Oxidative stress was significantly attenuated in the CA1 pyramidal neurons, and this was determined by 4-hydroxy-2-nonenal immunohistochemistry and dihydroethidium histofluorescence staining. Taken together, the results indicated that YES-10® significantly attenuated transient ischemia-induced oxidative stress and may be utilized for developing a protective agent against ischemic insults.

8.
Molecules ; 25(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036412

RESUMO

Aronia melanocarpa, a black chokeberry, contains high levels of phenolic acids and polyphenolic flavonoids and displays antioxidative and anti-inflammatory effects. Through high-performance liquid chromatography for extracts from Aronia melanocarpa, we discovered that the extract contained chlorogenic acid and rutin as major ingredients. In this study, we examined the protective effects of the extract against ultraviolet B- (UVB)-induced photodamage in the dorsal skin of institute of cancer research (ICR) mice. Their dorsal skin was exposed to UVB, thereafter; the extract was topically applied once a day for seven days. Photoprotective properties of the extract in the dorsal skin were investigated by clinical skin severity score for skin injury, hematoxylin and eosin staining for histopathology, Masson's trichrome staining for collagens. In addition, we examined change in collagen type I and III, and matrix metalloproteinase (MMP)-1 and MMP-3 by immunohistochemistry. In the UVB-exposed mice treated with the extract, UVB-induced epidermal damage was significantly ameliorated, showing that epidermal thickness was moderated. In these mice, immunoreactivities of collagen type I and III were significantly increased, whereas immunoreactivities of MMP-1 and 3 were significantly decreased compared with those in the UVB-exposed mice. These results indicate that treatment with Aronia melanocarpa extract attenuates UV-induced photodamage by attenuating UVB-induced collagen disruption: these findings might be a result of the chlorogenic acid and rutin contained in the extract. Based on the current results, we suggest that Aronia melanocarpa can be a useful material for developing photoprotective adjuvant.


Assuntos
Ácido Clorogênico/química , Colágeno/metabolismo , Photinia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rutina/química , Raios Ultravioleta/efeitos adversos , Administração Tópica , Animais , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação
9.
J Obes Metab Syndr ; 29(3): 215-221, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32990259

RESUMO

Background: Sodium-glucose cotransporter 2 inhibitors reduce the risk of cardiovascular death in individuals with type 2 diabetes mellitus (T2DM) and cardiovascular disease, but the effect of these inhibitors on early cardiovascular disease remains unknown. This study evaluated the effect of dapagliflozin on the metabolic profiles and endothelial cell function in obese patients with T2DM without established cardiovascular disease. Methods: We enrolled 140 patients with a mean age, weight, and body mass index (BMI) of 47 years, 83 kg, and 30.3 kg/m2, respectively. Dapagliflozin (10 mg daily for 6 months) was administered to obese patients with T2DM without established cardiovascular disease. Participants' weight, BMI, body fat mass (BFM), muscle mass, glycosylated hemoglobin (HbA1c), lipid profile, waist to hip ratio (WHR), and pulse wave velocity (PWV) were measured at baseline and after 6 months. Results: Participants experienced statistically significant reductions in their HbA1c, fasting plasma glucose, low-density lipoprotein cholesterol, total cholesterol, body weight, BMI, WHR, BFM, and aortic PWV, without a significant change in their muscle mass, extracellular fluid, or intracellular volume. Statistically significant reductions in aortic PWV were associated with a decrease in BFM, visceral fat, WHR, and homeostatic model assessment of insulin resistance. Conclusion: Dapagliflozin may be beneficial in preventing early cardiovascular disease in obese patients with T2DM without established cardiovascular disease.

10.
Endocrinol Metab (Seoul) ; 35(3): 610-617, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32981303

RESUMO

BACKGROUND: It is well known that high serum ferritin, a marker of iron storage, predicts incident type 2 diabetes. Limited information is available on the association between transferrin, another marker of iron metabolism, and type 2 diabetes. Thus, we investigated the association between transferrin and incident type 2 diabetes. METHODS: Total 31,717 participants (mean age, 40.4±7.2 years) in a health screening program in 2005 were assessed via cross-sectional analysis. We included 30,699 subjects who underwent medical check-up in 2005 and 2009 and did not have type 2 diabetes at baseline in this retrospective longitudinal analysis. RESULTS: The serum transferrin level was higher in the type 2 diabetes group than in the non-type 2 diabetes group (58.32±7.74 µmol/L vs. 56.17±7.96 µmol/L, P<0.001). Transferrin correlated with fasting serum glucose and glycosylated hemoglobin in the correlational analysis (r=0.062, P<0.001 and r=0.077, P<0.001, respectively) after full adjustment for covariates. Transferrin was more closely related to homeostasis model assessment of insulin resistance than to homeostasis model assessment of ß cell function (r=0.042, P<0.001 and r=-0.019, P=0.004, respectively) after full adjustment. Transferrin predicted incident type 2 diabetes in non-type 2 diabetic subjects in a multivariate linear regression analysis; the odds ratio (95% confidence interval [CI]) of the 3rd tertile compared to that in the 1st tertile of transferrin for incident diabetes was 1.319 (95% CI, 1.082 to 1.607) after full adjustment (P=0.006). CONCLUSION: Transferrin is positively associated with incident type 2 diabetes in Koreans.

11.
Nutrients ; 12(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824513

RESUMO

Pycnogenol® (an extract of the bark of French maritime pine tree) is used for dietary supplement and known to have excellent antioxidative efficacy. However, there are few reports on neuroprotective effect of Pycnogenol® supplementation and its mechanisms against ischemic injury following transient forebrain ischemia (TFI) in gerbils. Now, we examined neuroprotective effect and its mechanisms of Pycnogenol® in the gerbils with 5-min TFI, which evokes a significant death (loss) of pyramidal cells located in the cornu ammonis (CA1) region of gerbil hippocampus from 4-5 days post-TFI. Gerbils were pretreated with 30, 40, and 50 mg/kg of Pycnogenol® once a day for 7 days before TFI surgery. Treatment with 50 mg/kg, not 30 or 40 mg/kg, of Pycnogenol® potently protected learning and memory, as well as CA1 pyramidal cells, from ischemic injury. Treatment with 50 mg/kg Pycnogenol® significantly enhanced immunoreactivity of antioxidant enzymes (superoxide dismutases and catalase) in the pyramidal cells before and after TFI induction. Furthermore, the treatment significantly reduced the generation of superoxide anion, ribonucleic acid oxidation and lipid peroxidation in the pyramidal cells. Moreover, interestingly, its neuroprotective effect was abolished by administration of sodium azide (a potent inhibitor of SODs and catalase activities). Taken together, current results clearly indicate that Pycnogenol® supplementation can prevent neurons from ischemic stroke through its potent antioxidative role.


Assuntos
Antioxidantes , Região CA1 Hipocampal/citologia , Suplementos Nutricionais , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Animais , Catalase/metabolismo , Modelos Animais de Doenças , Gerbillinae , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Células Piramidais/enzimologia , Superóxido Dismutase/metabolismo
12.
Plants (Basel) ; 9(2)2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991860

RESUMO

: Clematis mandshurica RUPR. (CMR) and Erigeron annuus (L.) PERS. (EALP) have pharmacological effects including anti-inflammatory activity and been used in traditional medicines in Asia. However, neuroprotective effects of CMR and/or EALP extracts against brain ischemic insults have never been addressed. Thus, the aim of this study was to examine neuroprotective effects of YES-10, a combination of extracts from CMR and EALP (combination ratio, 1:1), in the hippocampus following ischemia/reperfusion in gerbils. Protection of neurons was investigated by cresyl violet staining, fluoro-jade B histofluorescence staining and immunohistochemistry for neuronal nuclei. In addition, attenuation of gliosis was studied by immunohistochemistry for astrocytic and microglial markers. Treatments with 50 or 100 mg/kg YES-10 failed to protect neurons in the hippocampus after ischemia/reperfusion injury. However, administration of 200 mg/kg YES-10 protected neurons from ischemia/reperfusion injury and attenuated reactive gliosis. These findings strongly suggest that a combination of extracts from CMR and EALP can be used as a prevention approach/drug against brain ischemic damage.

13.
Iran J Basic Med Sci ; 22(8): 963-967, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31579454

RESUMO

Objectives: Populus species have various pharmacological properties, including antioxidant activity. In this study, the effects of Populus tomentiglandulosa extract (PTE) on histopathology and antioxidant enzymes in the rat liver and kidney were examined. Materials and Methods: Sprague-Dawley rats were assigned to three groups; (1) normal diet fed group, (2) ascorbic acid-containing diet-fed group as a positive control, (3) PTE-containing diet-fed group. The histopathology in the rat liver and kidney was examined by hematoxylin and eosin staining. The effect of PTE was examined in the rat liver and kidney by immunohistochemistry for antioxidant enzymes, such as superoxide dismutases (SOD1 and SOD2), catalase (CAT), and glutathione peroxidase (GPx). Results: No marked histopathological alterations were observed in the liver and kidney of the PTE-containing diet-fed group. In the liver, the mean numbers of SOD1, SOD2, CAT, and GPx immunoreactive cells were significantly increased in the PTE-containing diet-fed rats, compared with those in the normal- and ascorbic acid-containing diet-fed rats. In the kidney, all SOD1, SOD2, CAT, and GPx immunoreactive structures were significantly increased in the PTE-containing diet-fed group, compared with those in the normal- and ascorbic acid-containing diet-fed groups. Conclusion: Results showed that PTE treatment significantly increased antioxidant enzymes in the rat liver and kidney, and we suggest that PTE might have hepato- and nephro-protective potentials against oxidative stress.

14.
Chin J Nat Med ; 17(6): 424-434, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31262455

RESUMO

To examine the effects of Populus tomentiglandulosa (PT) extract on the expressions of antioxidant enzymes and neurotrophic factors in the cornu ammonis 1 (CA1) region of the hippocampus at 5 min after inducing transient global cerebral ischemia (TGCI) in gerbils, TGCI was induced by occlusion of common carotid arteries for 5 min. Before ischemic surgery, 200 mg·kg-1 PT extract was orally administrated once daily for 7 d. We performed neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B staining. Furthermore, we determined in situ production of superoxide anion radical, expression levels of SOD1 and SOD2 as antioxidant enzymes and brain-derived neurotrophic factor (BDNF) and insulin-like growth factor I (IGF-I) as neurotrophic factors. Pretreatment with 200 mg·kg-1 PT extract prevented neuronal death (loss). Furthermore, pretreatment with 200 mg·kg-1 PT extract significantly inhibited the production of superoxide anion radical, increased expressions of SODs and maintained expressions of BDNF and IGF-I. Such increased expressions of SODs were maintained in the neurons after IRI. In summary, pretreated PT extract can significantly increase levels of SODs and protect the neurons against TGCI, suggesting that PT can be a useful natural agent to protect against TGCI.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Extratos Vegetais/administração & dosagem , Populus/química , Células Piramidais/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Superóxido Dismutase/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Região CA1 Hipocampal/metabolismo , Gerbillinae , Humanos , Fator de Crescimento Insulin-Like I/genética , Masculino , Fármacos Neuroprotetores/administração & dosagem , Células Piramidais/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase/genética , Regulação para Cima/efeitos dos fármacos
15.
Neural Regen Res ; 14(9): 1536-1543, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31089052

RESUMO

Recently, we have reported that Oenanthe javanica extract (OJE) displays strong neuroprotective effect against ischemic damage after transient global cerebral ischemia. However, neuroprotective mechanisms of OJE have not been fully identified. Thus, this study investigated the neuroprotection of OJE in the hippocampal CA1 area and its anti-inflammatory activity in gerbils subjected to 5 minutes of transient global cerebral ischemia. We treated the animals by intragastrical injection of OJE (100 and 200 mg/kg) once daily for 1 week prior to transient global cerebral ischemia. Neuroprotection of OJE was observed by immunohistochemistry for neuronal nuclear antigen and histofluorescence staining for Fluoro-Jade B. Immunohistochemistry of glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 was done for astrocytosis and microgliosis, respectively. To investigate the neuroprotective mechanisms of OJE, we performed immunohistochemistry of tumor necrosis factor-alpha and interleukin-2 for pro-inflammatory function and interleukin-4 and interleukin-13 for anti-inflammatory function. When we treated the animals by intragastrical administration of 200 mg/kg of OJE, hippocampal CA1 pyramidal neurons were protected from transient global cerebral ischemia and cerebral ischemia-induced gliosis was inhibited in the ischemic hippocampal CA1 area. We also found that interleukin-4 and -13 immunoreactivities were significantly increased in pyramidal neurons of the ischemic CA1 area after OJE pretreatment, and the increased immunoreactivities were sustained in the CA1 pyramidal neurons after transient global cerebral ischemia. However, OJE pretreatment did not increase interleukin-2 and tumor necrosis factor-alpha immunoreactivities in the CA1 pyramidal neurons. Our findings suggest that pretreatment with OJE can protect neurons and attenuate gliosis from transient global cerebral ischemia via increasing expressions of interleukin-4 and -13. The experimental plan of this study was reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) in Kangwon National University (approval No. KW-160802-1) on August 10, 2016.

16.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901885

RESUMO

In recent years, the use of botanical agents to prevent skin damage from solar ultraviolet (UV) irradiation has received considerable attention. Oenanthe javanica is known to exert anti-inflammatory and antioxidant activities. This study investigated photoprotective properties of an Oenanthe javanica extract (OJE) against UVB-induced skin damage in ICR mice. The extent of skin damage was evaluated in three groups: control mice with no UVB, UVB-exposed mice treated with vehicle (saline), and UVB-exposed mice treated with 1% extract. Photoprotective properties were assessed in the dorsal skin using hematoxylin and eosin staining, Masson trichrome staining, immunohistochemical staining, quantitative real-time polymerase chain reaction, and western blotting to analyze the epidermal thickness, collagen expression, and mRNA and protein levels of type I collagen, type III collagen, and interstitial collagenases, including matrix metalloproteinase (MMP)-1 and MMP-3. In addition, tumor necrosis factor (TNF)-α and cyclooxygenase (COX)-2 protein levels were also assessed. In the UVB-exposed mice treated with extract, UV-induced epidermal damage was significantly ameliorated. In this group, productions of collagen types I and III were increased, and expressions of MMP-1 and MMP-3 were decreased. In addition, TNF-α and COX-2 expressions were reduced. Based on these findings, we conclude that OJE displays photoprotective effects against UVB-induced collagen disruption and inflammation and suggest that Oenanthe javanica can be used as a natural product for the treatment of photodamaged skin.


Assuntos
Colágeno/metabolismo , Oenanthe/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Biomarcadores , Biópsia , Dermatite/tratamento farmacológico , Dermatite/etiologia , Dermatite/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Imuno-Histoquímica/métodos , Camundongos , Extratos Vegetais/química , Substâncias Protetoras/química
17.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696078

RESUMO

Fucoidan, a natural sulfated polysaccharide, displays various biological activities including antioxidant properties. We examined the neuroprotective effect of fucoidan against transient global cerebral ischemia (tGCI) in high-fat diet (HFD)-induced obese gerbils and its related mechanisms. Gerbils received HFD for 12 weeks and fucoidan (50 mg/kg) daily for the last 5 days during HFD exposure, and they were subjected to 5-min tGCI. Pyramidal cell death was observed only in the CA 1 area (CA1) of the hippocampus in non-obese gerbils 5 days after tGCI. However, in obese gerbils, pyramidal cell death in the CA1 and CA2/3 occurred at 2 days and 5 days, respectively, after tGCI. In the obese gerbils, oxidative stress indicators (dihydroethidium, 8-hydroxyguanine and 4-hydroxy-2-nonenal) were significantly enhanced and antioxidant enzymes (SOD1 and SOD2) were significantly reduced in pre- and post-ischemic phases compared to the non-obese gerbils. Fucoidan treatment attenuated acceleration and exacerbation of tGCI-induced neuronal death in the CA1⁻3, showing that oxidative stress was significantly reduced, and antioxidant enzymes were significantly increased in pre- and post-ischemic phases. These findings indicate that pretreated fucoidan can relieve the acceleration and exacerbation of ischemic brain injury in an obese state via the attenuation of obesity-induced severe oxidative damage.


Assuntos
Antioxidantes/uso terapêutico , Hipocampo/patologia , Ataque Isquêmico Transitório/tratamento farmacológico , Neurônios/patologia , Obesidade/tratamento farmacológico , Polissacarídeos/uso terapêutico , Aldeídos/metabolismo , Animais , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Dieta Hiperlipídica , Gerbillinae , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Obesidade/patologia , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/farmacologia , Superóxido Dismutase/metabolismo
18.
Biomed Pharmacother ; 109: 1718-1727, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551426

RESUMO

Fucoidan is a sulfated polysaccharide derived from brown algae and possesses various beneficial activities, including antioxidant property. Previous studies have shown that fucoidan displays protective effect against ischemia-reperfusion injury in some organs. However, few studies have been reported regarding the protective effect of fucoidan against transient cerebral ischemic insults and its related mechanisms. Therefore, in this study, we examined the neuroprotective effect of fucoidan against transient global cerebral ischemia (tGCI), as well as underlying its mechanism using a gerbil model of tGCI which shows a loss of pyramidal neurons in the hippocampal cornu ammonis 1 (CA1) area after 5 min of tGCI. Fucoidan (25 and 50 mg/kg) was intraperitoneally administered once daily for 5 days before tGCI. Pretreatment with 50 mg/kg of fucoidan, not 25 mg/kg of fucoidan, attenuated tGCI-induced hyperactivity and protected CA1 pyramidal neurons from tGCI. In addition, pretreatment with 50 mg/kg of fucoidan inhibited activations of astrocytes and microglia in the ischemic CA1 area. Furthermore, pretreatment with 50 mg/kg of fucoidan significantly reduced the increased 4-hydroxy-2-noneal and superoxide anion radical production in the ischemic CA1 area and significantly increased expressions of SOD1 and SOD2 in the CA1 pyramidal neurons before and after tGCI. Additionally, treatment with diethyldithiocarbamate (an inhibitor of SODs) to the fucoidan-treated gerbils notably abolished the fucoidan-mediated neuroprotection. In brief, our present results indicate that fucoidan can effectively protect neurons from tGCI through attenuation of activated glial cells and reduction of oxidative stress via increase of SODs. Thus, we strongly suggest that fucoidan can be used as a useful preventive agent in cerebral ischemia.


Assuntos
Anticoagulantes/administração & dosagem , Região CA1 Hipocampal/efeitos dos fármacos , Ataque Isquêmico Transitório/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/administração & dosagem , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Gerbillinae , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Masculino , Estresse Oxidativo/fisiologia , Distribuição Aleatória
19.
Mol Med Rep ; 18(6): 4802-4812, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30272360

RESUMO

Intermittent fasting has been shown to have neuroprotective effects against transient focal cerebral ischemic insults. However, the effects of intermittent fasting on transient global ischemic insult has not been studied much yet. The present study examined effects of intermittent fasting on endogenous antioxidant enzyme expression levels in the hippocampus and investigated whether the fasting protects neurons 5 days after 5 min of transient global cerebral ischemia. Gerbils were randomly subjected to either ad libitum or alternate­day intermittent fasting for two months and assigned to sham surgery or transient ischemia. Changes of antioxidant enzymes were examined using immunohistochemistry for cytoplasmic superoxide dismutase 1 (SOD1), mitochondrial (SOD2), catalase (CAT), and glutathione peroxidase (GPX). The effects of intermittent fasting on ischemia­induced antioxidant changes, neuronal damage/degeneration and glial activation were examined. The weight of fasting gerbils was not different from that of control gerbils. In controls, SOD1 and GPX immunoreactivities were strong in pyramidal neurons of filed cornu ammonis 1 (CA1). Transient ischemia in controls significantly decreased expressions of SOD1 and GPX in CA1 pyramidal neurons. Intermittent fasting resulted in increased expressions of SOD2 and CAT, not of SOD1 and GPX, in CA1 pyramidal neurons. Nevertheless, CA1 pyramidal neurons were not protected in gerbils subjected to fasting after transient ischemia, and inhibition of glial­cell activation was not observed in the gerbils. In summary, intermittent fasting for two months increased SOD2 and CAT immunoreactivities in hippocampal CA1 pyramidal neurons. However, fasting did not protect the CA1 pyramidal neurons from transient cerebral ischemia. The results of the present study indicate that intermittent fasting may increase certain antioxidants, but not protect neurons from transient global ischemic insult.


Assuntos
Catalase/metabolismo , Jejum/metabolismo , Gerbillinae/metabolismo , Hipocampo/irrigação sanguínea , Hipocampo/metabolismo , Isquemia/metabolismo , Neurônios/metabolismo , Superóxido Dismutase/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores , Peso Corporal , Morte Celular , Gerbillinae/genética , Imuno-Histoquímica , Isquemia/genética , Masculino , Neuroglia/metabolismo , Neurônios/patologia , Oxirredução , Células Piramidais/metabolismo , Células Piramidais/patologia , Superóxido Dismutase/genética
20.
Clin Ther ; 40(5): 752-761.e2, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29729957

RESUMO

PURPOSE: The purpose of this study was to compare the adherence of the glimepiride/metformin sustained release (GM-SR) once-daily fixed-dose combination and glimepiride/metformin immediate release (GM-IR) BID fixed-dose combination in type 2 diabetes therapies. METHODS: An open-label, randomized, multicenter, parallel-group study was conducted at 11 hospitals in the Republic of Korea. A total of 168 patients with type 2 diabetes treated with >4 mg of glimepiride and 1000 mg of metformin by using free or fixed-dose combination therapy for at least 2 weeks were enrolled. Patients were randomized to receive GM-SR 4/1000 mg once-daily or GM-IR 2/500 mg BID for 24 weeks. Adherence was compared by using the Medication Event Monitoring System (MEMS). FINDINGS: A significant difference in adherence was observed between the 2 groups. Overall adherence, defined by the number of container openings divided by the number of prescribed doses, was 91.7% in the GM-SR group and 88.6% in the GM-IR group (P < 0.001). The percentage of treatment days with the correct number of doses taken was 85.3% in the GM-SR group and 75.1% in the GM-IR group (P < 0.001). The percentage of missed doses was 11.7% in the GM-SR group and 15.3% in the GM-IR group (P < 0.001). The percentage of doses taken in the correct time window and therapeutic coverage were higher in the GM-SR group (P < 0.001). There was no significant difference in glycosylated hemoglobin changes or number of adverse events between the 2 groups. A total of 168 patients randomized to receive GM-SR once daily (86 patients) or GM-IR twice daily (82 patients). Mean Age were 57.8 ± 9.6 years old. Male : female ratio was 47.6 : 52.4 %. Body mass index were 66.3 ± 12.0 kg/m2, Diabetes duration were 10.5 ± 6.6 years. IMPLICATIONS: This study showed that patient adherence with GM-SR once daily was significantly better than with GM-IR BID. ClinicalTrials.gov identifier: NCT01620489.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Compostos de Sulfonilureia/administração & dosagem , Idoso , Índice de Massa Corporal , Preparações de Ação Retardada/uso terapêutico , Feminino , Hemoglobina A Glicada/análise , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Adesão à Medicação , Metformina/uso terapêutico , Pessoa de Meia-Idade , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...