Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 605
Filtrar
2.
Biomed Microdevices ; 22(2): 42, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32495156

RESUMO

Deterministic lateral displacement (DLD) is a microfluidic technique for size fractionation of particles/cells in continuous flow with a great potential for biological and clinical applications. Growing interest of DLD devices in enabling high-throughput operation for practical applications, such as circulating tumor cell (CTC) separation, necessitates employing higher flow rates, leading to operation at moderate to high Reynolds number (Re) regimes. Recently, it has been shown that symmetric airfoil shaped pillars with neutral angle-of-attack (AoA) can be used for high-throughput design of DLD devices due to their mitigation of vortex effects and preservation of flow symmetry under high Re conditions. While high-Re operation with symmetric airfoil shaped pillars has been established, the effect of AoAs on the DLD performance has not been investigated. In this paper, we have characterized the airfoil DLD device with various AoAs. The transport behavior of microparticles has been observed and analyzed with various AoAs in realistic high-Re. Furthermore, we have modeled the flow fields and anisotropy in a representative airfoil pillar array, for both positive and negative AoA configurations. Unlike the conventional DLD device, lateral displacement has been suppressed with +5° and + 15° AoA configurations regardless of particle sizes. On the other hand, stronger lateral displacement has been seen with -5° and - 15° AoAs. This can be attributed to growing flow anisotropy as Re climbs, and significant expansion or compression of streamlines between airfoils with AoAs. The findings in this study can be utilized for the design and optimization of airfoil DLD microfluidic devices with various AoAs.

3.
Brain Struct Funct ; 225(6): 1805-1816, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32495131

RESUMO

Excitatory corticofugal projections in the subcortical white matter (WM) convey signals arising from local neuronal activity in the gray matter (GM). We hypothesized that metabotropic glutamate receptor-5 (mGluR5) availability in GM, as a surrogate marker for local glutamatergic neuronal activity, correlates with WM properties in healthy brain. We examined the relationship in healthy individuals between GM mGluR5 availability measured in vivo using [11C]ABP688 positron emission tomography (PET) and WM properties measured as fractional anisotropy (FA) using diffusion tensor imaging (DTI). Twenty-three healthy volunteers underwent this multimodal imaging. We calculated mGluR5 availability, [11C]ABP688 binding potential (BPND), using the simplified reference tissue model, and generated DTI FA maps using FMRIB's Diffusion Toolbox (FDT) along with Tract-Based Spatial Statistics (TBSS). To investigate the relationship between mGluR5 availability and FA, we performed voxel-wise and region of interest (ROI)-based analyses. The voxel-wise analysis showed significant positive correlations between the whole cerebral GM [11C]ABP688 BPND and the FA in widespread WM regions including the corpus callosum body, internal capsule, and corona radiata (FWE corrected p < 0.05). The ROI-based analysis also revealed significant positive correlations (Bonferroni-corrected threshold p < 0.00021) between [11C]ABP688 BPND in the frontal and parietal cortical GM and FA in the internal capsule (anterior limb and retrolenticular part). Using a novel multimodal imaging interrogation, we provide the first evidence that GM mGluR5 availability is significantly positively associated with WM properties in healthy subjects. Future comparison studies could determine whether this relationship is perturbed in neuropsychiatric disorders with dysregulated mGluR5 signaling.

4.
FASEB J ; 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32421247

RESUMO

Human-induced pluripotent stem cells (hiPSCs) are invaluable sources for drug screening and toxicity tests because of their differentiation potential and proliferative capacity. Recently, the CRISPR-Cas9-mediated homologous recombination system has enabled reporter knock-ins at desired loci in hiPSCs, and here, we generated a hiPSC reporter line expressing mCherry-tagged cytochrome P450 1A1 (CYP1A1), which can be utilized to screen for the modulators of aryl hydrocarbon receptor (AHR) in live cells. CYP1A1-mCherry hiPSCs exhibited typical characteristics of pluripotent stem cells such as marker expression, differentiation potential, and normal karyotype. After differentiation into hepatocyte-like cells (HLCs), CYP1A1-mCherry fusion protein was expressed and localized at the endoplasmic reticulum, and induced by AHR agonists. We obtained 23 hits modulating CYP1A1 expression from high-content screening with 241 hepatotoxicity chemicals and nuclear receptor ligands, and identified three upregulating chemicals and two downregulating compounds. Responses of hiPSC-HLCs against an AHR agonist were more similar to human primary hepatocytes than of HepG2 hepatocellular carcinoma cells. This platform has the advantages of live-cell screening without sacrificing cells (unlike previously available CYP1A1 reporter cell lines), as well as an indefinite supply of cells, and can be utilized in a wide range of screening related to AHR- and CYP1A1-associated diseases in desired cell types.

5.
Biomolecules ; 10(5)2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397672

RESUMO

Inflammation is a fundamental process for defending against foreign antigens that involves various transcriptional regulatory processes as well as molecular signaling pathways. Despite its protective roles in the human body, the activation of inflammation may also convey various diseases including autoimmune disease and cancer. Sorbaria kirilowii is a plant originating from Asia, with no anti-inflammatory activity reported. In this paper, we discovered an anti-inflammatory effect of S. kirilowii ethanol extract (Sk-EE) both in vivo and in vitro. In vitro effects of Sk-EE were determined with lipopolysaccharide (LPS)-stimulated RAW264.7 cells, while ex vivo analysis was performed using peritoneal macrophages of thioglycollate (TG)-induced mice. Sk-EE significantly reduced the nitric oxide (NO) production of induced macrophages and inhibited the expression of inflammation-related cytokines and the activation of transcription factors. Moreover, treatment with Sk-EE also decreased the activation of proteins involved in nuclear factor (NF)-κB signaling cascade; among them, Src was a prime target of Sk-EE. For in vivo assessment of the anti-inflammatory effect of Sk-EE, HCl/EtOH was given by the oral route to mice for gastritis induction. Sk-EE injection dose-dependently reduced the inflammatory lesion area of the stomach in gastritis-induced mice. Taking these results together, Sk-EE exerts its anti-inflammatory activity by regulating intracellular NF-κB signaling pathways and also shows an authentic effect on reducing gastric inflammation.

6.
J Hepatol ; 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32247824

RESUMO

BACKGROUND & AIMS: Mucosal-associated invariant T (MAIT) cells, the most abundant innate-like T cells in human liver, can be activated by cytokines during viral infection without TCR stimulation. Here, we examined the mechanisms underlying TCR/MR1-independent innate-like cytotoxicity of cytokine-activated liver MAIT cells. We also examined the phenotype and function of MAIT cells from patients with acute viral hepatitis. METHODS: We obtained liver sinusoidal mononuclear cells from donor liver perfusate during liver transplantation and examined the effect of various cytokines on liver MAIT cells using flow cytometry and in vitro cytotoxicity assays. We also obtained peripheral blood and liver-infiltrating T cells from patients with acute hepatitis A (AHA) and examined the phenotype and function of MAIT cells using flow cytometry. RESULTS: IL-15-stimulated MAIT cells exerted granzyme B-dependent innate-like cytotoxicity in the absence of TCR/MR1 interaction. PI3K-mTOR signaling, NKG2D ligation, and CD2-mediated conjugate formation were critically required for this IL-15-induced innate-like cytotoxicity. MAIT cells from patients with AHA exhibited activated and cytotoxic phenotypes with higher NKG2D expression. The innate-like cytotoxicity of MAIT cells was significantly increased in patients with AHA and correlated with serum alanine aminotransferase levels. CONCLUSIONS: Taken together, the results demonstrate that liver MAIT cells activated by IL-15 exert NKG2D-dependent innate-like cytotoxicity in the absence of TCR/MR1 engagement. Furthermore, the innate-like cytotoxicity of MAIT cells is associated with liver injury in patients with AHA, suggesting that MAIT cells contribute to immune-mediated liver injury in liver disease.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32311391

RESUMO

BACKGROUND: Pemphigus vulgaris (PV) is an autoimmune bullous disease mediated by autoantibodies against desmoglein 3 (DSG3). Inducible costimulator (ICOS) is a costimulatory receptor expressed on T cells and influences the activity of T follicular helper (TFH) cells in various autoimmune diseases, but the roles of ICOS and TFH cells in PV remain unclear. OBJECTIVE: We examined the immunological characteristics, antigen specificity, and pathogenicity of CD4+ T-cell subpopulations, as well as the therapeutic effect of anti-ICOS blocking antibodies in PV. METHODS: A mouse model of PV was established by adoptive transfer of immune cells from the skin-draining lymph nodes or spleens of DSG3-expressing skin-grafted Dsg3-/- mice into Rag1-/- mice. The TFH cells and CD4+ T cells in PBMCs from PV patients were examined by flow cytometry. RESULTS: Among CD4+ T cells from the mouse model, ICOS-positive TFH cells were associated with B-cell differentiation and were required for disease induction. Using an MHC class II tetramer, DSG3-specific ICOS+ TFH cells were found to be associated with anti-DSG3 antibody production and expanded in the absence of B cells. In human PV, the frequency of ICOS+CXCR5+PD-1+ memory CD4+ T cells correlated with the autoantibody level. Treatment with anti-ICOS blocking antibodies targeting ICOS+ TFH cells decreased the anti-DSG3 antibody level and delayed disease progression in vivo. CONCLUSIONS: Mouse Dsg3-specific ICOS+ TFH cells and human ICOS+CXCR5+PD-1+ TH cells are associated with the anti-DSG3 antibody response in PV. ICOS expressed on CXCR5+PD-1+ TH cells may be a therapeutic target for PV.

8.
Cells ; 9(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252475

RESUMO

Human pluripotent stem cells (hPSCs) including human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) have been extensively studied as an alternative cellular model for recapitulating phenotypic and pathophysiologic characters of human diseases. Particularly, hiPSCs generated from the genetic disease somatic cells could provide a good cellular model to screen potential drugs for treating human genetic disorders. However, the patient-derived cellular model has a limitation when the patient samples bearing genetic mutations are difficult to obtain due to their rarity. Thus, in this study, we explored the potential use of hPSC-derived Wilson's disease model generated without a patient sample to provide an alternative approach for modeling human genetic disease by applying gene editing technology. Wilson's disease hPSCs were generated by introducing a R778L mutation in the ATP7B gene (c.2333G>T) using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system into wildtype hESCs. Established Wilson's disease hESCs were further differentiated into hepatocyte-like cells (HLCs) and analyzed for disease phenotypes and responses against therapeutic agent treatment. R778L mutation in the ATP7B gene was successfully introduced into wildtype hESCs, and the introduction of the mutation neither altered the self-renewal ability of hESCs nor the differentiation capability into HLCs. However, R778L mutation-introduced HLCs exhibited higher vulnerability against excessive copper supplementation than wildtype HLCs. Finally, the applicability of the R778L mutation introduced HLCs in drug screening was further demonstrated using therapeutic agents against the Wilson's diseases. Therefore, the established model in this study could effectively mimic the Wilson's disease without patient's somatic cells and could provide a reliable alternative model for studying and drug screening of Wilson's disease.

9.
Molecules ; 25(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218338

RESUMO

Despite previous reports of anti-aging effects of Korean red ginseng (KRG), the underlying mechanisms remain poorly understood. Therefore, this study investigated possible mechanisms of KRG-mediated anti-aging effects in aged mice. KRG significantly inhibited thymic involution in old mice. Interestingly, KRG only increased protein expression, but not mRNA expression, of aging-related genes Lin28a, GDF-11, Sirt1, IL-2, and IL-17 in the thymocytes of old mice. KRG also modulated the population of some types of immune cells in old mice. KRG increased the population of regulatory T cells and interferon-gamma (IFN-γ)-expressing natural killer (NK) cells in the spleen of old mice, but serum levels of regulatory T cell-specific cytokines IL-10 and TGF-ß were unaffected. Finally, KRG recovered mRNA expression of Lin28a, GDF-11, and Sirt1 artificially decreased by concanavalin A (Con A) in both thymocytes and splenocytes of old mice without cytotoxicity. These results suggest that KRG exerts anti-aging effects by preventing thymic involution, as well as modulating the expression of aging-related genes and immune cell subsets.

10.
Mol Immunol ; 120: 136-145, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32120181

RESUMO

Evasion of the immune system is often associated with malignant tumors. The cancer cell microenvironment plays an important role in tumor progression, but its mechanism is largely unknown. Here we show that an extracellular compound derived from gastric cancer (GC-EC) selectively suppresses CD161+CD3- natural killer (NK) cells. Splenocytes treated with GC-EC showed considerable proliferation and the CD161+CD3- NK cell population was time-dependently suppressed. Intracellular staining of IFN-γ was shown to be down-regulated in concert with granzyme B and perforin. A cytotoxicity assay of splenocytes treated with GC-EC against K-562 cells showed a significant reduction in cytolytic activity. Further, the immune-suppressive effect of GC-EC was more evident in a syngeneic tumor model in C57BL/6 mice. Animals treated with B16 F10 and GC-EC exhibited more aggravated tumor formation than animals treated with B16 F10 only. We demonstrated that inhibition of apoptosis while increasing PI3 K/AKT levels may provoke tumor formation by GC-EC. A cytokine array revealed the presence of several cytokines in GC-EC that negatively regulate immune cytolytic activity and could be potential candidates for immune-suppressive effects.


Assuntos
Células Matadoras Naturais/imunologia , Neoplasias Gástricas/imunologia , Animais , Apoptose/imunologia , Complexo CD3/imunologia , Proliferação de Células , Citocinas/imunologia , Citotoxicidade Imunológica , Espaço Extracelular/imunologia , Humanos , Tolerância Imunológica , Células K562 , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Ratos , Ratos Sprague-Dawley , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Microambiente Tumoral/imunologia
11.
Stem Cell Res ; 43: 101732, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32087526

RESUMO

Endoplasmic reticulum stress (ER stress) leads an unfolded protein response (UPR) which results in internal cellular responses such as proteostasis and protein clearance. Recently, several reports demonstrated that the ER stress in stem cells could affect their stemness and fates to differentiate into certain lineages. However, the potential for controlling differentiation and function of cells by regulating ER stress needs to be further addressed. Here, we demonstrated that relieving the ER stress in cell cultures enhances the functionalities of hPSC-derived hepatocytes and other hepatic cells to be used in various research fields. Firstly, we found that UPR genes were up-regulated during hepatic differentiation of hPSCs and treatment of ER stress reliever at the hepatic induction stage of the differentiation resulted the enhanced mature marker expressions and glycogen storage of the differentiated hepatocytes. The treatment of ER stress reliever also improved the maintenance of hepatic characteristics in long-term culture of hPSC-derived hepatocytes. Furthermore, relieving ER stress increased the hepatic marker expression and CYP3A4 activity in hepatoma cell lines and human primary hepatocytes. Taken together, our findings indicate that regulating ER stress of in vitro cultured hepatocytes might be a crucial factor for enhancing differentiation, function and maintaining hepatic identity.

12.
Dysphagia ; 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32040613

RESUMO

We investigated the predictive value of the corticobulbar tract (CBT) for dysphagia using diffusion tensor tractography in the early stage of intracerebral hemorrhage (ICH) for dysphagia. Forty-two patients with spontaneous ICH ± intraventricular hemorrhage (IVH) and 22 control subjects were recruited. The patients were classified into three groups: group A-could remove nasogastric tube (NGT) in the acute stage of ICH, group B-could remove NGT within 6 months after onset, and group C-could not remove NGT until 6 months after onset. The CBT were reconstructed, and fractional anisotropy (FA) and tract volume (TV) values were determined. The FA of the CBT in the affected hemisphere in group A was lower than in the control group (p < 0.05). The FA and TV of the CBT in the affected hemisphere in group B were lower than those in the control group (p < 0.05). In group C, the FA and TV in the affected hemisphere and unaffected hemispheres were lower than in the control group (p < 0.05). The TV of the CBT in the affected hemisphere in group B showed a moderate negative correlation with the length of time until NGT removal (r = 0.430, p < 0.05). We found that patients with CBT injuries in both hemispheres were not able to remove the NGT until 6 months after onset, whereas patients who were injured only in the affected hemisphere were able to remove NGT within 6 months of onset. The severity of injury to the CBT in the affected hemisphere appeared to be related to the length of time until NGT removal.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32073823

RESUMO

The direct control of topological surface states in topological insulators is an important prerequisite for the application of these materials. Conventional attempts to utilize magnetic doping, mechanical tuning, structural engineering, external bias, and external magnetic fields suffer from a lack of reversible switching and have limited tunability. We demonstrate the direct control of topological phases in a bismuth selenide (Bi2Se3) topological insulator in 3 nm molecular beam epitaxy-grown films through the hybridization of the topological surface states with the hafnium (Hf) d-orbitals in the topmost layer of an underlying oxygen-deficient hafnium oxide (HfO2) substrate. The higher angular momentum of the d-orbitals of Hf is hybridized strongly by topological insulators, thereby enhancing the spin-orbit coupling and perturbing the topological surface states asymmetry in Bi2Se3. As the oxygen defect is cured or generated reversibly by external electric fields, our research facilitates the complete electrical control of the topological phases of topological insulators by controlling the defect density in the adjacent transition metal oxide. In addition, this mechanism can be applied in other related topological materials such as Weyl and Dirac semimetals in future endeavors to facilitate practical applications in unit-element devices for quantum computing and quantum communication.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32052884

RESUMO

BACKGROUND AND AIM: The purpose of this study was to investigate the long-term oncologic outcomes after stereotactic body radiation therapy (SBRT) for small hepatocellular carcinoma (HCC). METHODS: A total of 290 patients with HCC were registered between March 2007 and July 2013. A dose of 10-15 Gy per fraction was given over three to four consecutive days, resulting in a total dose of 30-60 Gy. Overall and recurrence-free survivals were estimated from the date of the start of SBRT to the date of death, the last follow-up examination, or to the date of tumor recurrence. RESULTS: The median follow-up period of all patients was 38.2 months, and the median tumor size was 1.7 cm. Overall survival (OS) rate at 5 years was 44.9%. Multivariate analyses revealed that age, Child-Pugh class, tumor size, and albumin levels were significant factors for OS. The 5-year local control rate was 91.3%. In multivariate analysis, tumor size and albumin were significantly associated with local tumor control. However, there was a negative correlation between total dose and tumor size in Pearson's correlation analysis (r = -0.111, P = 0.046). CONCLUSIONS: Stereotactic body radiation therapy was an excellent ablative treatment option for patients with small HCC. Tumor size was a significant factor for local tumor control after SBRT, although the total dose was negatively correlated with tumor size. Considering the low OS rates and the high local tumor control rates, the combined SBRT and systemic therapies may be beneficial for improving survival outcomes.

15.
Am J Transplant ; 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31965710

RESUMO

Regulatory T (Treg) cells are important in preventing acute rejection (AR) in solid organ transplantation, but the clinical relevance of the different kinetics early after liver transplantation (LT) in acute rejectors and non-rejectors is unclear. We analyzed peripheral blood samples of 128 LT recipients receiving basiliximab induction plus tacrolimus immunosuppression. Samples were obtained at pretransplant, D7, and D30 after LT. Frequency and phenotype of Tregs were analyzed by flow cytometry. The predictive value of Treg frequency at D7 was assessed for suspected acute rejection (SAR) and was validated for biopsy-proven AR (BPAR). We found that the frequencies of total and activated Tregs at D7 were significantly lower in recipients with SAR and BPAR. Treg was more reduced in BPARs by in vitro tacrolimus treatment in the presence of basiliximab. Moreover, an early reduction of Treg frequency in rejectors was associated with a greater increase in Treg apoptosis and further attenuated IL-2 signaling. D7 Treg frequency was an independent risk factor for SAR, which was also validated for BPAR. In conclusion, first-week peripheral blood Treg frequency correlates with AR after LT under tacrolimus-based immunosuppression, which needs to be proven in larger, geographically and clinically diverse populations.

16.
J Hepatol ; 72(6): 1170-1181, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31987989

RESUMO

BACKGROUND & AIMS: Human liver CD69+CD8+ T cells are ~95% CD103- and ~5% CD103+. Although CD69+CD103+CD8+ T cells show tissue residency and robustly respond to antigens, CD69+CD103-CD8+ T cells are not yet well understood. METHODS: Liver perfusate and paired peripheral blood were collected from healthy living donors and recipients with cirrhosis during liver transplantation. Liver tissues were obtained from patients with acute hepatitis A. Phenotypic and functional analyses were performed by flow cytometry. Gene expression profiles were determined by microarray and quantitative reverse transcription PCR. PT-2385 was used to inhibit hypoxia-inducible factor (HIF)-2α. RESULTS: Human liver CD69+CD103-CD8+ T cells exhibited HIF-2α upregulation with a phenotype of tissue residency and terminal differentiation. CD103- cells comprised non-hepatotropic virus-specific T cells as well as hepatotropic virus-specific T cells, but CD103+ cells exhibited only hepatotropic virus specificity. Although CD103- cells were weaker effectors on a per cell basis than CD103+ cells, following T cell receptor or interleukin-15 stimulation, they remained the major CD69+CD8+ effector population in the liver, surviving with less cell death. An HIF-2α inhibitor suppressed the effector functions and survival of CD69+CD103-CD8+ T cells. In addition, HIF-2α expression in liver CD69+CD103-CD8+ T cells was significantly increased in patients with acute hepatitis A or cirrhosis. CONCLUSIONS: Liver CD69+CD103-CD8+ T cells are tissue resident and terminally differentiated, and their effector functions depend on HIF-2α. Furthermore, activation of liver CD69+CD103-CD8+ T cells with HIF-2α upregulation is observed during liver pathology. LAY SUMMARY: The immunologic characteristics and the role of CD69+CD103-CD8+ T cells, which are a major population of human liver CD8+ T cells, remain unknown. Our study shows that these T cells have a terminally differentiated tissue-resident phenotype, and their effector functions depend on a transcription factor, HIF-2α. Furthermore, these T cells were activated and expressed higher levels of HIF-2α in liver pathologies, suggesting that they play an important role in immune responses in liver tissues and the pathogenesis of human liver disease.

17.
Artigo em Inglês | MEDLINE | ID: mdl-31678310

RESUMO

Insect growth regulators (IGRs) are attractive alternatives to chemical insecticides. Since it has been reported that secondary metabolites from actinomycetes show insecticidal activities against various insect pests, actinomycetes could be a potential source of novel IGR compounds. In the present study, insect juvenile hormone antagonists (JHANs) were identified from actinomycetes and their insect growth regulatory and insecticidal activities were investigated. A total of 363 actinomycetes were screened for their insect growth regulatory and insecticidal activities against Aedes albopictus and Plutella xylostella. Among them, Streptomyces sp. AN120537 showed the highest JHAN and insecticidal activities. Five antimycins were isolated as active compounds by assay-guided fractionation and showed high JHAN activities. These antimycins also exhibited significant insecticidal activities against A. albopictus, P. xylostella, F. occidentalis, and T. urticae. Moreover, dead larvae treated with these antimycins displayed morphological deformities that are similar to those of JH-based IGR-treated insects. This is the first report demonstrating that the insecticidal activities of antimycins resulted from their possible JHAN activity. Based on our results, it is expected that novel JHAN compounds potentially derived from actinomycetes could be efficiently applied as IGR insecticides with a broad insecticidal spectrum.


Assuntos
Actinobacteria/metabolismo , Aedes/efeitos dos fármacos , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Hormônios Juvenis/isolamento & purificação , Hormônios Juvenis/farmacologia , Lepidópteros/efeitos dos fármacos , Tetranychidae/efeitos dos fármacos , Animais , Inseticidas/química , Hormônios Juvenis/química , Metabolismo Secundário
18.
Int J Biol Macromol ; 146: 1024-1029, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726141

RESUMO

There is a substantial for the bone graft materials in the clinical field. Porous, stable and biodegradable bone microsphere scaffold using biopolymer chitosan was studied, and biphasic calcium phosphate was added to improve mechanical and osteoconductivity properties later ginseng compound K was added for improving its medicinal properties. They were characterized using FTIR and XRD that showed the apatite crystal in the composite microsphere scaffolds were structurally similar to that of biogenic apatite crystals. Scanning electron microscopy images confirmed the presence of hydroxyapatite on the surface of the composite microspheres. In vitro results infers that the composite microspheres are biocompatible with NIH 3T3 and MG63 cells and capable of supporting growth and spreading of MG-63 cells. Further, Osteogenic markers expression was found to be higher in rat bone marrow stem cells seeded on microsphere scaffolds compared to control. The prepared biocomposite porous microsphere scaffold developed in this study can be used as an alternative for the bone regeneration or bone tissue engineering.

19.
Asia Pac J Clin Oncol ; 16(2): e53-e62, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31657877

RESUMO

AIM: This study was conducted to evaluate the efficacy of palliative chemotherapy by the lines of chemotherapy in recurrent/metastatic esophageal squamous cell carcinoma (ESCC) and to compare the efficacy between the patients with initially metastatic ESCC and those with recurrent/progressed ESCC after curative treatment. MATERIALS AND METHODS: All 107 patients who began palliative chemotherapy for recurrent/metastatic ESCC from March 2015 to October 2017 were included, and grouped according to previous treatment: Groups A (previous chemoradiation alone, n = 30), B (previous surgery alone, n = 11), C (previous chemoradiation and surgery, n = 30), and D (initially metastatic or de novo stage IV, n = 36). Groups A, B, and C (pretreated group) and Group D (treatment-naïve group) were reorganized according to treatment history. Overall response rate (ORR) and survival data were retrospectively evaluated for each group, lines of chemotherapy, and chemotherapeutic regimen. RESULTS: ORR was 25.2%, 7.3%, and 3.4% in first-, second-, and third-line chemotherapy, respectively. The median progression-free survival (PFS) was 4.7, 2.0, and 2.2 months in first-, second-, third-line chemotherapy, respectively. The median overall survival (OS) after first-line palliative chemotherapy was 10.1 months, and it was not significantly different between pretreated and treatment-naive groups. Previous surgery, good performance, ≥3 lines of chemotherapy, and low C-reactive protein level were linked to a significantly longer OS in multivariate analysis. CONCLUSION: Because PFS rapidly declines with advancement of line of chemotherapy, incorporation of effective treatment modalities in early line treatments is crucial in the management of recurrent/metastatic ESCC. If tolerable, continuing advanced lines of chemotherapy may prolong survival.

20.
Soft Matter ; 16(2): 428-434, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31799582

RESUMO

Maturation and synchronisation of heart cells, including cardiomyocytes and fibroblasts, are essential to develop functional biomimetic cardiac tissues for regenerative medicine and drug discovery. Synchronisation of cells in the biomimetic cardiac tissue requires the structural integrity and functional maturation of cardiomyocytes with other cell types. However, it is challenging to synchronise the beating of macroscale cardiac tissues and induce maturation of cardiomyocytes derived from stem cells. Here, we developed a simple assembly technology to modulate cell-cell interactions by combining layer-by-layer (LBL) deposition and centrifugation of cells with collagen type I to control cell-cell interactions for the preparation of cardiac macro tissues (CMTs). We found that maturation of cardiomyocytes in CMTs was largely enhanced by growth factors FGF-4 and ascorbic acid, but synchronisation of cardiac beating required LBL deposition of cardiomyocytes and cardiac fibroblasts in addition to the growth factors during the maturation process. Our findings have important implications because incorporation of cardiac fibroblasts into the cardiomyocyte layer is a prerequisite for synchronised beating of macroscale cardiac tissues in addition to growth factors to facilitate maturation of stem cell-derived cardiomyocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA