RESUMO
OBJECTIVES: Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease with low quality of life caused by various constitutional symptoms and glandular dysfunction. Although fatigue is one of the most frequent symptoms in pSS, its aetiology or biomarkers are poorly elucidated. We investigated potential relationship between severity of fatigue and the kynurenine pathway in pSS. METHODS: Clinical data and blood samples of 81 patients were obtained from a prospective cohort for pSS and compared with age- and sex-matched healthy controls (HC). Severity of fatigue was defined according to the fatigue domain scores in the ESSPRI. Potential biomarkers related to the kynurenine pathway were determined using ELISA. RESULTS: Of the total, 44 patients were defined as the "severe fatigue (ESSPRI fatigue ≥ 5)" group, whereas 37 as the "less fatigue (ESSPRI fatigue < 5)". Serum tryptophan levels in the severe fatigue group were significantly lower while those of kynurenine were higher. Serum interferon gamma, IDO1, and quinolinic acid levels were mostly higher in the less fatigue group. Kynurenine/tryptophan ratios were distinctly higher in the severe fatigue group than both HC and the less fatigue group (p < 0.001). This ratio showed a strong degree of positive correlation (r = 0.624, p < 0.001) with severity of fatigue in pSS while the other markers showed fair degrees of correlation. CONCLUSIONS: Serum markers related to the kynurenine pathway, especially the kynurenine/tryptophan ratio, may be associated with severity of fatigue in pSS. These results can provide guidance for further investigations on fatigue in pSS.
RESUMO
Resistant bacteria are emerging as a critical problem in the treatment of bacterial infections by neutralizing antibiotic activity. The development of new traditional mechanisms of antibiotics is not the optimal solution. A more reasonable approach may be to use relatively safe, plant-based compounds in combination with conventional antibiotics in an effort to increase their efficacy or restore their activity against resistant bacteria. We present our study of mixing Ricini Semen extract, or its constituent fatty acids, with oxacillin and testing the effects of each on the growth of methicillin-resistant Staphylococcus aureus. Changes in the cell membrane fluidity of methicillin-resistant S. aureus were found to be a major component of the mechanism of synergistic antibiotic activity of Ricini Semen extract and its constituent fatty acids. In our model, changes in cellular membrane fluidity disrupted the normal function of bacterial signaling membrane proteins BlaR1 and MecR1, which are known to detect oxacillin, and resulted in the incomplete expression of penicillin-binding proteins 2a and ß-lactamase. Utilizing the mechanism presented in this study presents the possibility of developing a method for treating antibiotic-resistant bacteria using traditional antibiotics with plant-based compounds.
RESUMO
This study attempts to identify the direction of urban regeneration projects in declining areas by using the concept of urban resilience to cope with climate change and disaster. To this end, urban resilience was classified into a Green Resilient Infrastructure (GRI) and an Interactive Safety System (ISS), through a review of previous studies, and categorized into vulnerability, adaptability, and transformability. A total of 12 detailed indicators were derived and indexed using Euclidean distance. Using the indicators, three Korean urban regeneration targets, in Daegu, Mokpo, and Seosan, were selected to evaluate resilience before and after the urban regeneration plan. Consequently, the postplanning resilience index improved in all three target sites, compared to before the regeneration plan. Additionally, previously the regeneration plan showed lower index values in comparison to places not designated as urban regeneration areas. These results suggest that urban resilience needs to be considered in future urban regeneration projects, and that resilience indicators can be used as a means to set the direction of urban regeneration projects. To improve the overall resilience of a region, these indices can help local government establish a reference point for urban resilience in its region.
Assuntos
Desastres , Mudança Climática , Governo Local , República da CoreiaRESUMO
Adaptable and sensitive materials are essential for the development of advanced sensor systems such as bio and chemical sensors. Biomaterials can be used to develop multifunctional biosensor applications using genetic engineering. In particular, a plasmonic sensor system using a coupled film nanostructure with tunable gap sizes is a potential candidate in optical sensors because of its simple fabrication, stability, extensive tuning range, and sensitivity to small changes. Although this system has shown a good ability to eliminate humidity as an interferant, its performance in real-world environments is limited by low selectivity. To overcome these issues, we demonstrated the rapid response of gap plasmonic color sensors by utilizing metal nanostructures combined with genetically engineered M13 bacteriophages to detect volatile organic compounds (VOCs) and diagnose lung cancer from breath samples. The M13 bacteriophage was chosen as a recognition element because the structural protein capsid can readily be modified to target the desired analyte. Consequently, the VOCs from various functional groups were distinguished by using a multiarray biosensor based on a gap plasmonic color film observed by hierarchical cluster analysis. Furthermore, the lung cancer breath samples collected from 70 healthy participants and 50 lung cancer patients were successfully classified with a high rate of over 89% through supporting machine learning analysis.
Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , Nanoestruturas , Compostos Orgânicos Voláteis , Humanos , Nanoestruturas/química , Neoplasias Pulmonares/diagnóstico , Compostos Orgânicos Voláteis/análise , Bacteriófago M13RESUMO
Understanding the relationship between land use/land cover (LULC) and land surface temperature (LST) has long been an area of interest in urban and environmental study fields. To examine this, existing studies have utilized both white-box and black-box approaches, including regression, decision tree, and artificial intelligence models. To overcome the limitations of previous models, this study adopted the explainable artificial intelligence (XAI) approach in examining the relationships between LULC and LST. By integrating the XGBoost and SHAP model, we developed the LST prediction model in Seoul and estimated the LST reduction effects after specific LULC changes. Results showed that the prediction accuracy of LST was maximized when landscape, topographic, and LULC features within a 150 m buffer radius were adopted as independent variables. Specifically, the existence of surrounding built-up and vegetation areas were found to be the most influencing factors in explaining LST. In this study, after the LULC changes from expressway to green areas, approximately 1.5 °C of decreasing LST was predicted. The findings of our study can be utilized for assessing and monitoring the thermal environmental impact of urban planning and projects. Also, this study can contribute to determining the priorities of different policy measures for improving the thermal environment.
Assuntos
Inteligência Artificial , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Temperatura , Planejamento de Cidades , SeulRESUMO
Today, unpredictable damage can result from extreme weather such as heat waves and floods. This damage makes communities that cannot respond quickly to disasters more vulnerable than cities. Thus, people living in such communities can easily become isolated, which can cause unavoidable loss of life or property. In the meantime, many disaster management studies have been conducted, but studies on effective disaster response for areas surrounded by mountains or with weak transportation infrastructure are very rare. To fill the gap, this research aimed at developing an automated analysis tool that can be directly used for disaster response and recovery by identifying in real time the communities at risk of isolation using a web-based geographic information system (GIS) application. We first developed an algorithm to automatically detect communities at risk of isolation due to disaster. Next, we developed an analytics module to identify buildings and populations within the communities and efficiently place at-risk residents in shelters. In sum, the analysis tool developed in this study can be used to support disaster response decisions regarding, for example, rescue activities and supply of materials by accurately detecting isolated areas when a disaster occurs in a mountainous area where communication and transportation infrastructure is lacking.
Assuntos
Planejamento em Desastres , Desastres , Humanos , Inundações , Cidades , Sistemas de Informação GeográficaRESUMO
In this study, we present microporous carbon (MPC), hollow microporous carbon (HMC) and hierarchically porous carbon (HPC) to demonstrate the importance of strategical designing of nanoarchitectures in achieving advanced catalyst (or electrode) materials, especially in the context of oxygen reduction reaction (ORR). Based on the electrochemical impedance spectroscopy and ORR studies, we identify a marked structural effect depending on the porosity. Specifically, mesopores are found to have the most profound influence by significantly improving electrochemical wettability and accessibility. We also identify that macropore contributes to the rate capability of the porous carbons. The results of the rotating ring disk electrode (RRDE) method also demonstrate the advantages of strategically designed double-shelled nanoarchitecture of HPC to increase the overall electron transfer number (n) closer to four by offering a higher chance of the double two-electron pathways. Next, selective doping of highly active Fe-N x sites on HPC is obtained by increasing the nitrogen content in HPC. As a result, the optimized Fe and N co-doped HPC demonstrate high ORR catalytic activity comparable to the commercial 20 wt% Pt/C in alkaline electrolyte. Our findings, therefore, strongly advocate the importance of a strategic design of advanced catalyst (or electrode) materials, especially in light of both structural and doping effects, from the perspective of nanoarchitectonics.
RESUMO
The major histocompatibility complex-B (MHC-B) region of chicken is crucially important in their immunogenesis and highly diverse among different breeds, lines, and even populations. Because it determines the resistance/susceptibility to numerous infectious diseases, it is important to analyze this genomic region, particularly classical class I and II genes, to determine the variation and diversity that ultimately affect antigen presentation. This study investigated five lines of indigenous Korean native chicken (KNC) and the Ogye breed using next-generation sequencing (NGS) data with Geneious Prime-based assembly and variant calling with the Genome Analysis Toolkit (GATK) best practices pipeline. The consensus sequences of MHC-B (BG1-BF2) were obtained for each chicken line/breed and their variants were analyzed. All of the Korean native chicken lines possessed an excessive number of variants, including an ample amount of high-impact variants that provided useful information regarding modified major histocompatibility complex molecules. The study confirmed that next-generation sequencing techniques can effectively be used to detect MHC variabilities and the KNC lines are highly diverse for the MHC-B region, suggesting a substantial divergence from red junglefowl.
RESUMO
As urban transportation systems often face disruptive events, including natural and man-made disasters, the importance of resilience in the transportation sector has recently been on the rise. In particular, the worldwide spread of the COVID-19 pandemic resulted in a significant decrease in citizens' public transit use to avoid unnecessary physical contact with others. Accordingly, bike-share has been highlighted as one of the sustainable modes that can replace public transit and, thus, improve the overall resilience of the urban transportation systems in response to COVID-19. This study aims to examine the changes in causal relationships between bike-share and public transit throughout the COVID-19 pandemic in Seoul, Korea. We analyzed bike-share and public transit ridership from Jan 2018 to Dec 2020. We developed a weekly panel vector autoregressive (PVAR) model to identify the bike-transit relationships before and after the pandemic. Our results showed that COVID-19 weakens the competitive relationships between bike-share and bus transit and modal integration between bike-share and subway transit. This study also found that bus and subway transit were more competitive with each other after the outbreak of COVID-19. The study's findings suggest that bike-share can increase the overall resilience of the urban transportation system during the pandemic situation, particularly for those who rely on public transit for their mobility.
RESUMO
Phenolic acids, found in cereals, legumes, vegetables, and fruits, have various biological functions. We aimed to compare the antihypertensive potential of different phenolic acids by evaluating their ACE inhibitory activity and cytoprotective capacity in EA.hy 926 endothelial cells. In addition, we explored the mechanism underlying the antihypertensive activity of sinapic acid. Of all the phenolic acids studied, sinapic acid, caffeic acid, coumaric acid, and ferulic acid significantly inhibited ACE activity. Moreover, gallic acid, sinapic acid, and ferulic acid significantly enhanced intracellular NO production. Based on the results of GSH depletion, ROS production, and MDA level analyses, sinapic acid was selected to study the mechanism underlying the antihypertensive effect. Sinapic acid decreases endothelial dysfunction by enhancing the expression of antioxidant-related proteins. Sinapic acid increased phosphorylation of eNOS and Akt in a dose-dependent manner. These findings indicate the potential of sinapic acid as a treatment for hypertension.
Assuntos
Anti-Hipertensivos , Ácidos Cumáricos , Anti-Hipertensivos/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Ácidos Cumáricos/farmacologia , Células Endoteliais/metabolismo , Ácido Gálico/farmacologia , Hidroxibenzoatos/farmacologia , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Verduras/metabolismoRESUMO
Genetic analysis has great potential as a tool to differentiate between different species and breeds of livestock. In this study, the optimal combinations of single nucleotide polymorphism (SNP) markers for discriminating the Yeonsan Ogye chicken (Gallus gallus domesticus) breed were identified using high-density 600K SNP array data. In 3,904 individuals from 198 chicken breeds, SNP markers specific to the target population were discovered through a case-control genome-wide association study (GWAS) and filtered out based on the linkage disequilibrium blocks. Significant SNP markers were selected by feature selection applying two machine learning algorithms: Random Forest (RF) and AdaBoost (AB). Using a machine learning approach, the 38 (RF) and 43 (AB) optimal SNP marker combinations for the Yeonsan Ogye chicken population demonstrated 100% accuracy. Hence, the GWAS and machine learning models used in this study can be efficiently utilized to identify the optimal combination of markers for discriminating target populations using multiple SNP markers.
RESUMO
Inorganic two-dimensional (2D) materials offer a new approach to control mass diffusion at the nanoscale. Controlling ion transport in nanofluidics is key to energy conversion, energy storage, water purification, and numerous other applications wherein persistent challenges for efficient separation must be addressed. We herein discuss the recent development of 2D membranes in the emerging field of energy harvesting, water desalination, and proton/Li-ion production in the context of green energy and environmental technology. We highlight the fundamental mechanisms, 2D membrane fabrication, and challenges toward practical applications. Finally, we outline the fundamental issues of thermodynamics and kinetics along with potential membrane designs that must be resolved to bridge the gap between lab-scale experiments and production levels. This article is protected by copyright. All rights reserved.
RESUMO
Background: Mutations of thyroid hormone receptor α (TRα1) result in resistance to thyroid hormone (RTHα), exhibiting symptoms of retarded growth, delayed bone maturation, anemia, and severe constipation. Using a mouse model of RTHα (Thra1PV/+ mouse), we aimed at understanding the molecular basis underlying the severe constipation observed in patients. Methods: The Thra1PV/+ mouse expresses a strong dominant negative mutant, PV, which has lost T3 binding and transcription activity. Thra1PV/+ mouse faithfully reproduces growth abnormalities and anemia as shown in RTHα patients and therefore is a valid model to examine causes of severe constipation in patients. We used histopathological analysis, confocal fluorescence imaging, transmission electron microscopy (TEM), and gene expression profiles to comprehensively analyze the colonic abnormalities of Thra1PV/+ mouse. Results: We found a significant increase in colonic transit time and decrease stool water content in Thra1PV/+ mouse, mimicking constipation as found in patients. Histopathological analysis showed expanded lamina propria filled with interstitium fluid between crypt columns, enlarged muscularis mucosa, and increased content of collagen in expanded submucosa. The TEM analysis revealed shorter muscle fibers with wider gap junctions between muscle cells, fewer caveolae, and hypoplastic interstitial cells of Cajal (ICC) in the rectal smooth muscles of Thra1PV/+ mice. These abnormal histological manifestations suggested defective intercellular transfer of small molecules, electrolytes, and signals for communication among muscles cells, validated by Lucifer Yellow transferring assays. Expression of key smooth muscle contractility regulators, such as calmodulin, myosin light-chain kinase, and phosphorylated myosin light chain, was markedly lower, and c-KIT signaling in ICC was attenuated, resulting in decreased contractility of the rectal smooth muscles of Thra1PV/+ mice. Collectively, these abnormal histopathological alterations and diminished contractility regulators led to the constipation exhibited in patients. Conclusions: This is the first demonstration that TRα1 mutants could act to cause abnormal rectum smooth muscle organization, defects in intercellular exchange of small molecules, and decreased expression of contractility regulators to weaken the contractility of rectal smooth muscles. These findings provide new insights into the molecular basis underlying constipation found in RTHα patients.
RESUMO
Metal-organic frameworks (MOFs), or porous coordination polymers, are crystalline porous materials formed by coordination bonding between inorganic and organic species on the basis of the self-assembly of the reacting units. The typical characteristics of MOFs, including their large specific surface areas, ultrahigh porosities and excellent thermal and chemical stabilities, as well as their great potential for chemical and structural modifications, make them excellent candidates for versatile applications. Their poor electrical conductivity, however, has meant that they have not been useful for electrochemical applications. Fortuitously, the direct carbonization of MOFs results in a rearrangement of the carbon atoms of the organic units into a network of carbon atoms, which means that the products have useful levels of conductivity. The direct carbonization of zeolitic imidazolate framework (ZIF)-type MOFs, particularly ZIF-8, has successfully widened the scope of possible applications of MOFs to include electrochemical reactions that could be used in, for example, energy storage, energy conversion, electrochemical biosensors and capacitive deionization of saline water. Here, we present the first detailed protocols for synthesizing high-quality ZIF-8 and its modified forms of hollow ZIF-8, core-shell ZIF-8@ZIF-67 and ZIF-8@mesostuctured polydopamine. Typically, ZIF-8 synthesis takes 27 h to complete, and subsequent nanoarchitecturing procedures leading to hollow ZIF-8, ZIF-8@ZIF-67 and ZIF-8@mPDA take 6, 14 and 30 h, respectively. The direct-carbonization procedure takes 12 h. The resulting nanoporous carbons are suitable for electrochemical applications, in particular as materials for supercapacitors.
Assuntos
Estruturas Metalorgânicas , Nanoporos , Zeolitas , Carbono , PorosidadeRESUMO
Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co-doped carbon nanotubes (NS-CNTs). The as-designed NS-CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g-1 at 1 A g-1 and a remarkable rate performance with a capacity of 151 mA h g-1 even at 5 A g-1 . Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g-1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge-discharge process. Although the kinetics studies reveal the capacitive-dominated process for potassium storage, density functional theory calculations provide evidence that N, S co-doping contributes to expanding the interlayer space to promote the K-ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K-ion adsorption.
RESUMO
Coccidiosis caused by the Eimeria species is a highly problematic disease in the chicken industry. Here, we used RNA sequencing to observe the time-dependent host responses of Eimeria-infected chickens to examine the genes and biological functions associated with immunity to the parasite. Transcriptome analysis was performed at three time points: 4, 7, and 21 days post-infection (dpi). Based on the changes in gene expression patterns, we defined three groups of genes that showed differential expression. This enabled us to capture evidence of endoplasmic reticulum stress at the initial stage of Eimeria infection. Furthermore, we found that innate immune responses against the parasite were activated at the first exposure; they then showed gradual normalization. Although the cytokine-cytokine receptor interaction pathway was significantly operative at 4 dpi, its downregulation led to an anti-inflammatory effect. Additionally, the construction of gene co-expression networks enabled identification of immunoregulation hub genes and critical pattern recognition receptors after Eimeria infection. Our results provide a detailed understanding of the host-pathogen interaction between chicken and Eimeria. The clusters of genes defined in this study can be utilized to improve chickens for coccidiosis control.
RESUMO
Plasmonic nanoparticle clusters promise to support unique engineered electromagnetic responses at optical frequencies, realizing a new concept of devices for nanophotonic applications. However, the technological challenges associated with the fabrication of three-dimensional nanoparticle clusters with programmed compositions remain unresolved. Here, we present a novel strategy for realizing heterogeneous structures that enable efficient near-field coupling between the plasmonic modes of gold nanoparticles and various other nanomaterials via a simple three-dimensional coassembly process. Quantum dots embedded in the plasmonic structures display â¼56 meV of a blue shift in the emission spectrum. The decay enhancement factor increases as the total contribution of radiative and nonradiative plasmonic modes increases. Furthermore, we demonstrate an ultracompact diagnostic platform to detect M13 viruses and their mutations from femtoliter volume, sub-100 pM analytes. This platform could pave the way toward an effective diagnosis of diverse pathogens, which is in high demand for handling pandemic situations.
Assuntos
Nanopartículas Metálicas , Nanoestruturas , Pontos Quânticos , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Pontos Quânticos/químicaRESUMO
Using tungsten disulfide (WS2) as a hydrogen evolution reaction (HER) electrocatalyst brought on several ways to surpass its intrinsic catalytic activity. This study introduces a nanodomain tungsten oxide (WO3) interface to 1T-WS2, opening a new route for facilitating the transfer of a proton to active sites, thereby enhancing the HER performance. After H2S plasma sulfurization on the W layer to realize nanocrystalline 1T-WS2, subsequent O2 plasma treatment led to the formation of amorphous WO3 (a-WO3), resulting in a patchwork-structured heterointerface of 1T-WS2/a-WO3 (WSO). Addition of a hydrophilic interface (WO3) facilitates the hydrogen spillover effect, which represents the transfer of absorbed protons from a-WO3 to 1T-WS2. Moreover, the faster response of the cathodic current peak (proton insertion) in cyclic voltammetry is confirmed by the higher degree of oxidation. The rationale behind the faster proton insertion is that the introduced a-WO3 works as a proton channel. As a result, WSO-1.2 (the ratio of 1T-WS2 to a-WO3) exhibits a remarkable HER activity in that 1T-WS2 consumes more protons provided by the channel, showing an overpotential of 212 mV at 10 mA/cm2. Density functional theory calculations also show that the WO3 phase gives higher binding energies for initial proton adsorption, while the 1T-WS2 phase shows reduced HER overpotential. This improved catalytic performance demonstrates a novel strategy for water splitting to actively elicit the related reaction via efficient proton transport.
RESUMO
Polyethylene terephthalate (PET) waste was depolymerized into bis(2-hydroxyethyl) terephthalate (BHET) through glycolysis with the aid of oyster shell-derived catalysts. The equilibrium yield of BHET was as high as 68.6% under the reaction conditions of mass ratios (EG to PET = 5, catalyst to PET = 0.01) at 195 °C for 1 h. Although biomass-derived Ca-based catalysts were used for PET glycolysis to obtain BHET monomers, no statistical analysis was performed to optimize the reaction conditions. Thus, in this study, we applied response surface methodology (RSM) based on three-factor Box-Behnken design (BBD) to investigate the optimal conditions for glycolysis by analyzing the independent and interactive effects of the factors, respectively. Three independent factors of interest include reaction time, temperature, and mass ratio of catalyst to PET under a fixed amount of ethylene glycol (mass ratio of EG to PET = 5) due to the saturation of the yield above the mass ratio. The quadratic regression equation was calculated for predicting the yield of BHET, which was in good agreement with the experimental data (R2 = 0.989). The contour and response surface plots showed the interaction effect between three variables and the BHET yield with the maximum average yield of monomer (64.98%) under reaction conditions of 1 wt% of mass ratio (catalyst to PET), 195 °C, and 45 min. Both the experimental results and the analyses of the response surfaces revealed that the interaction effects of reaction temperature vs. time and temperature vs. mass ratio of the catalyst to the PET were more prominent in comparison to reaction time vs. mass ratio of the catalyst to the PET.
RESUMO
A heterostructured porous carbon framework (PCF) composed of reduced graphene oxide (rGO) nanosheets and metal organic framework (MOF)-derived microporous carbon is prepared to investigate its potential use in a lithium-ion battery. As an anode material, the PCF exhibits efficient lithium-ion storage performance with a high reversible specific capacity (771 mA h g-1 at 50 mA g-1), an excellent rate capability (448 mA h g-1 at 1000 mA g-1), and a long lifespan (75% retention after 400 cycles). The in situ transmission electron microscopy (TEM) study demonstrates that its unique three-dimensional (3D) heterostructure can largely tolerate the volume expansion. We envisage that this work may offer a deeper understanding of the importance of tailored design of anode materials for future lithium-ion batteries.