Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(23): 5918-5923, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533377

RESUMO

In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the <100>, <111>, and <751> orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films. The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure. Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C-C coupling than Cu(111), Cu(751) is the most selective for >2e- oxygenate formation at low overpotentials. Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction.

2.
J Am Chem Soc ; 138(10): 3355-61, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26883789

RESUMO

Atomic-level visualization of the intercalation of layered materials, such as metal chalcogenides, is of paramount importance in the development of high-performance batteries. In situ images of the dynamic intercalation of Li ions into MoS2 single-crystal electrodes were acquired for the first time, under potential control, with the use of a technique combining laser confocal microscopy with differential interference microscopy. Intercalation proceeded via a distinct phase separation of lithiated and delithiated regions. The process started at the atomic steps of the first layer beneath the selvedge and progressed in a layer-by-layer fashion. The intercalated regions consisted of Li-ion channels into which the newly inserted Li ions were pushed atom-by-atom. Interlayer diffusion of Li ions was not observed. Deintercalation was also clearly imaged and was found to transpire in a layer-by-layer mode. The intercalation and deintercalation processes were chemically reversible and can be repeated many times within a few atomic layers. Extensive intercalation of Li ions disrupted the atomically flat surface of MoS2 because of the formation of small lithiated domains that peeled off from the surface of the crystal. The current-potential curves of the intercalation and deintercalation processes were independent of the scan rate, thereby suggesting that the rate-determining step was not governed by Butler-Volmer kinetics.

3.
J Am Chem Soc ; 137(28): 9006-14, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26154680

RESUMO

Atomically flat, terraced H-Ge(111) was prepared by annealing in H2(g) at 850 °C. The formation of monohydride Ge-H bonds oriented normal to the surface was indicated by angle-dependent Fourier-transform infrared (FTIR) spectroscopy. Subsequent reaction in CCl3Br(l) formed Br-terminated Ge(111), as shown by the disappearance of the Ge-H absorption in the FTIR spectra concomitant with the appearance of Br photoelectron peaks in X-ray photoelectron (XP) spectra. The Br-Ge(111) surface was methylated by reaction with (CH3)2Mg. These surfaces exhibited a peak at 568 cm(-1) in the high-resolution electron energy loss spectrum, consistent with the formation of a Ge-C bond. The absorption peaks in the FTIR spectra assigned to methyl "umbrella" and rocking modes were dependent on the angle of the incident light, indicating that the methyl groups were bonded directly atop surface Ge atoms. Atomic-force micrographs of CH3-Ge(111) surfaces indicated that the surface remained atomically flat after methylation. Electrochemical scanning-tunneling microscopy showed well-ordered methyl groups that covered nearly all of the surface. Low-energy electron diffraction images showed sharp, bright diffraction spots with a 3-fold symmetry, indicating a high degree of order with no evidence of surface reconstruction. A C 1s peak at 284.1 eV was observed in the XP spectra, consistent with the formation of a C-Ge bond. Annealing in ultrahigh vacuum revealed a thermal stability limit of ∼400 °C of the surficial CH3-Ge(111) groups. CH3-Ge(111) surfaces showed significantly greater resistance to oxidation in air than H-Ge(111) surfaces.

4.
Langmuir ; 30(50): 15053-6, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489793

RESUMO

A study based on operando electrochemical scanning tunneling microscopy (EC-STM) has shown that a polycrystalline Cu electrode held at a fixed negative potential, -0.9 V (vs SHE), in the vicinity of CO2 reduction reactions (CO2RR) in 0.1 M KOH, undergoes stepwise surface reconstruction, first to Cu(111) within 30 min, and then to Cu(100) after another 30 min; no further surface transformations occurred after establishment of the Cu(100) surface. The results may help explain the Cu(100)-like behavior of Cu(pc) in terms of CO2RR product selectivity. They likewise suggest that products exclusive to Cu(100) single-crystal electrodes may be generated through the use of readily available inexpensive polycrystalline Cu electrodes. The study highlights the dynamic nature of heterogeneous electrocatalyst surfaces and also underscores the importance of operando interrogations when structure-composition-reactivity correlations are intended.

5.
Langmuir ; 28(5): 3024-31, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22211357

RESUMO

The growth of stoichiometric CuInSe(2) (CIS) on Au substrates using electrochemical atomic layer deposition (E-ALD) is reported here. Parameters for a ternary E-ALD cycle were investigated and included potentials, step sequence, solution compositions and timing. CIS was also grown by combining cycles for two binary compounds, InSe and Cu(2)Se, using a superlattice sequence. The formation, composition, and crystal structure of each are discussed. Stoichiometric CIS samples were formed using the superlattice sequence by performing 25 periods, each consisting of 3 cycles of InSe and 1 cycle of Cu(2)Se. The deposits were grown using 0.14, -0.7, and -0.65 V for Cu, In, and Se precursor solutions, respectively. XRD patterns displayed peaks consistent with the chalcopyrite phase of CIS, for the as-deposited samples, with the (112) reflection as the most prominent. AFM images of deposits suggested conformal deposition, when compared with corresponding image of the Au on glass substrate.

6.
Phys Chem Chem Phys ; 14(7): 2286-91, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22237766

RESUMO

In situ scanning tunneling microscopy (STM) was employed to examine the surface structures of Au(111), Au(100), and Au(110) single crystals in propylene carbonate (PC) containing tetrabutylammonium perchlorate (TBAP). All three electrodes exhibited potential-induced phase transition between the reconstructed and unreconstructed (1 × 1) structures at negative and positive potentials, respectively. The potential-induced phase transition of the Au electrode surfaces is attributed to the interaction of the TBA cation and the perchlorate anion at the electrode surface, which is similar to that which takes place in aqueous solutions. In addition to static atomic structures, dynamic processes of both the reconstruction and the lifting of the reconstruction were investigated by means of in situ STM. The lifting of reconstructed Au(111)-(√3 × 22) on Au(111) to the (1 × 1) structure is completed within 1 min at a positive potential. The diffusion of Au atoms on the Au(100) plane in the PC solution proceeds more rapidly than that in the aqueous solution, suggesting that the PC solvent plays an important role in accelerating the diffusion of Au atoms.

7.
Langmuir ; 27(24): 14828-33, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22111691

RESUMO

Self-assembled monolayers of a water-insoluble porphyrin, tetraphenyl porphyrin (TPP), in the presence of an aqueous electrolyte were characterized in situ with electrochemical scanning tunneling microscopy (EC-STM) at working electrode potentials of between 0.5 and -0.2 V. Isolated domains of TPP monolayers with differing orientation were observed on Au(111) in 0.1 M HClO(4) over this entire potential window. Individual TPP molecules could be resolved over a range of 700 mV, from open circuit potential (OCP) to near the hydrogen evolution potential. The unit cell is square, and the distance between neighboring molecules is about 1.4 ± 0.1 nm. High-resolution images allow the internal molecular structure to be discerned. No changes in the STM contrast of individual molecules were observed as the potential was changed. In a neutral electrolyte (0.1 M KClO(4), pH ~6), the potential range of stability of ordered structures is reduced. On HOPG, TPP forms ordered hexagonal structures with a lattice constant of about 2.6 nm in the double-layer potential region in 0.1 M HClO(4).


Assuntos
Eletrônica/métodos , Ouro/química , Porfirinas/análise , Porfirinas/química , Água/química , Adsorção , Eletroquímica , Eletrodos , Eletrólitos/química , Concentração de Íons de Hidrogênio , Microscopia de Tunelamento , Estrutura Molecular , Percloratos/química , Propriedades de Superfície
8.
Langmuir ; 26(4): 2877-84, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-19904953

RESUMO

The electrodeposition of germanium on Au(111) in aqueous solutions has been investigated by means of cyclic voltammetry, Auger electron spectroscopy, and in situ scanning tunneling microscopy (STM). The data yield a picture of germanium deposition, which starts with the formation of two well-ordered hydroxide phases, with 1/3 ML and 4/9 ML coverages upon initial reduction of the Ge(IV) species (probably H(2)GeO(3) at pH 4.7). Those structures appear to result from a three-electron reduction to form surface-limited structures with (square root(3) x square root(3))R30 degrees or (3 x 3) unit cells, respectively. Further reduction, probably in a two-electron process from the hydroxide structures, resulted in a germanium hydride structure, again surface-limited, with a coverage of close to 0.8 ML. The hydride structure is very flat, though with the periodic modulation characteristic of a Moiré pattern. Longer deposition times and lower potentials resulted in increased coverage of Ge in some cases, but with apparently limited coverage as a function of pH. The maximum Ge coverage, about 4 ML, was observed using a pH 9.32 deposition solution. At potentials negative of the Moiré pattern, about -850 mV versus Ag/AgCl, a "corruption" of the smooth Moiré pattern occurred. This roughening appears to mark the initial formation of a Au-Ge alloy, accounting for the observation of coverage in excess of that needed to form the Moiré pattern at some pH values.

9.
Langmuir ; 23(5): 2539-45, 2007 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-17309208

RESUMO

This article concerns the growth of an atomic layer of Pb on the Au(111)( radical3 x radical3)R30 degrees -I structure. The importance of this study lies in the use of Pb underpotential deposition (UPD) as a sacrificial layer in surface-limited redox replacement (SLRR). SLRR reactions are being applied in the formation of metal nanofilms via electrochemical atomic layer deposition (ALD). Pb UPD is a surface-limited reaction, and if it is placed in a solution of ions of a more noble metal, redox replacement can occur, but limited by the amount of Pb present. Pb UPD is a candidate for use as a sacrificial layer for replacement by any more noble element. It has been used by this group for both Cu and Pt nanofilm formation using electrochemical ALD. The I atom layer was intended to facilitate electrochemical annealing during nanofilm growth. Two distinctly different Pb atomic layer structures are reported, studied using in situ scanning tunneling microscopy (STM) with an electrochemical flow cell and ultrahigh vacuum surface analysis combined directly with electrochemical reactions (UHV-EC). Starting with the initial Au(111)( radical3 x radical3)R30 degrees -I, 1/3 monolayer of I on the Au(111) surface, Pb deposition began at approximately 0.1 V. The first Pb UPD structure was observed just below -0.2 V and displayed a (2 x radical3)-rect unit cell, for a structure composed of 1/4 monolayer each of Pb and I. The I atoms fit in Pb 4-fold sites, on the Au(111) surface. The structure was present in domains rotated by 120 degrees. Deposition to -0.4 V resulted in complete loss of the I atoms and formation of a Pb monolayer on the Au(111), which produced a Moiré pattern, due to the Pb and Au lattice mismatch. These structures represent two well-defined starting points for the growth of nanofilms of other more noble elements. It is apparent from these studies that the adsorption of I- on Pb is weak, and it will rinse away. If Pb is used as a sacrificial metal in an electrochemical ALD cycle and adsorbed I atoms are employed for electrochemical annealing, I atoms will need to be applied each cycle.

10.
Langmuir ; 22(25): 10762-5, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17129057

RESUMO

The interaction of hydroquinone (H2Q) with well-defined Pd(111) surfaces at preselected potentials in dilute H2SO4 has been studied by molecule-resolved electrochemical scanning tunneling microscopy (EC-STM). H2Q spontaneously undergoes oxidative chemisorption to benzoquinone (Q), which adopts a slightly tilted parallel orientation. Evidently, the surface coordination is through the quinone pi-electron system. At potentials within the double-layer region, a close-packed well-ordered Pd(111)-(3 x 3)-Q adlattice was formed. A potential excursion to 0.7 V, a potential at which the solution-phase Q/H2Q redox reaction takes place, introduced disorder into the organic adlayer; this positive-potential-induced order-to-disorder phase transition is reversible because the ordered (3 x 3)-Q adlattice was regenerated when the potential reverted to 0.4 V. When the potential was poised at 0.2 V, a potential at which hydrogen evolution was initiated, an appreciable fraction of Q was (hydrogenatively) desorbed; the remnant Q molecules were agglomerated in small islands that retained the (3 x 3) symmetry of the full adlayer. Two possible structural models of the Pd(111)-(3 x 3)-Q adlattice are described.

11.
J Phys Chem B ; 110(36): 17998-8006, 2006 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16956291

RESUMO

The growth of Pt nanofilms on well-defined Au(111) electrode surfaces, using electrochemical atomic layer epitaxy (EC-ALE), is described here. EC-ALE is a deposition method based on surface-limited reactions. This report describes the first use of surface-limited redox replacement reactions (SLR(3)) in an EC-ALE cycle to form atomically ordered metal nanofilms. The SLR(3) consisted of the underpotential deposition (UPD) of a copper atomic layer, subsequently replaced by Pt at open circuit, in a Pt cation solution. This SLR(3) was then used a cycle, repeated to grow thicker Pt films. Deposits were studied using a combination of electrochemistry (EC), in-situ scanning tunneling microscopy (STM) using an electrochemical flow cell, and ultrahigh vacuum (UHV) surface studies combined with electrochemistry (UHV-EC). A single redox replacement of upd Cu from a PtCl(4)(2-) solution yielded an incomplete monolayer, though no preferential deposition was observed at step edges. Use of an iodine adlayer, as a surfactant, facilitated the growth of uniformed films. In-situ STM images revealed ordered Au(111)-(square root 3 x square root 3)R30 degrees-iodine structure, with areas partially distorted by Pt nanoislands. After the second application, an ordered Moiré pattern was observed with a spacing consistent with the lattice mismatch between a Pt monolayer and the Au(111) substrate. After application of three or more cycles, a new adlattice, a (3 x 3)-iodine structure, was observed, previously observed for I atoms adsorbed on Pt(111). In addition, five atom adsorbed Pt-I complexes randomly decorated the surface and showed some mobility. These pinwheels, planar PtI(4) complexes, and the ordered (3 x 3)-iodine layer all appeared stable during rinsing with blank solution, free of I(-) and the Pt complex (PtCl(4)(2-)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...