Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(21): 11399-11408, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398368

RESUMO

Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.

2.
Biochem Pharmacol ; : 114043, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32445870

RESUMO

Epilepsy is characterised by spontaneous recurrent seizures that are caused by an imbalance between neuronal excitability and inhibition. Since ion channels play fundamental roles in the generation and propagation of action potentials as well as neurotransmitter release at a subset of excitatory and inhibitory synapses, their dysfunction has been linked to a wide variety of epilepsies. Indeed, these unique proteins are the major biological targets for antiepileptic drugs. Selective targeting of a specific ion channel subtype remains challenging for small molecules, due to the high level of homology among members of the same channel family. As a consequence, there is a growing trend to target ion channels with biologics. Venoms are the best known natural source of ion channel modulators, and venom peptides are increasingly recognised as potential therapeutics due to their high selectivity and potency gained through millions of years of evolutionary selection pressure. Here we describe the major ion channel families involved in the pathogenesis of various types of epilepsy, including voltage-gated Na+, K+, Ca2+ channels, Cys-loop receptors, ionototropic glutamate receptors and P2X receptors, and currently available venom-derived peptides that target these channel proteins. Although only a small number of venom peptides have successfully progressed to the clinic, there is reason to be optimistic about their development as anti-epileptic drugs, notwithstanding the challenges associated with development of any class of peptide drug.

3.
Biochem Pharmacol ; : 113991, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32335140

RESUMO

Dravet syndrome (DS) is a catastrophic epileptic encephalopathy characterised by childhood-onset polymorphic seizures, multiple neuropsychiatric comorbidities, and increased risk of sudden death. Heterozygous loss-of-function mutations in one allele of SCN1A, the gene encoding the voltage-gated sodium channel 1.1 (NaV1.1), lead to DS. NaV1.1 is primarily found in the axon initial segment of fast-spiking GABAergic inhibitory interneurons in the brain, and the principle mechanism proposed to underlie seizure genesis in DS is loss of inhibitory input due to dysfunctional firing of GABAergic interneurons. We hypothesised that DS symptoms could be ameliorated by a drug that activates the reduced population of functional NaV1.1 channels in DS interneurons. We recently identified two homologous disulfide-rich spider-venom peptides (Hm1a and Hm1b) that selectively potentiate NaV1.1, and showed that selective activation of NaV1.1 by Hm1a restores the function of inhibitory interneurons in a mouse model of DS. Here we produced recombinant Hm1b (rHm1b) using an E. coli periplasmic expression system, and examined its selectivity against a panel of human NaV subtypes using whole-cell patch-clamp recordings. rHm1b is a potent and highly selective agonist of NaV1.1 and NaV1.3 (EC50 ~12 nM for both). rHm1b is a gating modifier that shifts the voltage dependence of channel activation and inactivation to hyperpolarised and depolarised potentials respectively, presumably by interacting with the channel's voltage-sensor domains. Like Hm1a, the structure of rHm1b determined by using NMR revealed a classical inhibitor cystine knot (ICK) motif. However, we show that rHm1b is an order of magnitude more stable than Hm1a in human cerebrospinal fluid. Overall, our data suggest that rHm1b is an exciting lead for a precision therapeutic targeted against DS.

4.
Proteins ; 88(3): 485-502, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31589791

RESUMO

The cross-strand disulfides (CSDs) found in ß-hairpin antimicrobial peptides (ß-AMPs) show a unique disulfide geometry that is characterized by unusual torsion angles and a short Cα-Cα distance. While the sequence and disulfide bond connectivity of disulfide-rich peptides is well studied, much less is known about the disulfide geometry found in CSDs and their role in the stability of ß-AMPs. To address this, we solved the nuclear magnetic resonance (NMR) structure of the ß-AMP gomesin (Gm) at 278, 298, and 310 K, examined the disulfide bond geometry of over 800 disulfide-rich peptides, and carried out extensive molecular dynamics (MD) simulation of the peptides Gm and protegrin. The NMR data suggests Cα-Cα distances characteristic for CSDs are independent of temperature. Analysis of disulfide-rich peptides from the Protein Data Bank revealed that right-handed and left-handed rotamers are equally likely in CSDs. The previously reported preference for right-handed rotamers was likely biased by restricting the analysis to peptides and proteins solved using X-ray crystallography. Furthermore, data from MD simulations showed that the short Cα-Cα distance is critical for the stability of these peptides. The unique disulfide geometry of CSDs poses a challenge to biomolecular force fields and to retain the stability of ß-hairpin fold over long simulation times, restraints on the torsion angles might be required.

5.
Biochem Pharmacol ; 174: 113782, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31881193

RESUMO

Urotoxin (α-KTx 6), a peptide from venom of the Australian scorpion Urodacus yaschenkoi, is the most potent inhibitor of Kv1.2 described to date (IC50 = 160 pM). The native peptide also inhibits Kv1.1, Kv1.3 and KCa3.1 with nanomolar affinity but its low abundance in venom precluded further studies of its actions. Here we produced recombinant Urotoxin (rUro) and characterized the molecular determinants of Kv1 channel inhibition. The 3D structure of rUro determined using NMR spectroscopy revealed a canonical cysteine-stabilised α/ß (CSα/ß) fold. Functional assessment of rUro using patch-clamp electrophysiology revealed the importance of C-terminal amidation for potency against Kv1.1-1.3 and Kv1.5. Neutralization of the putative pore-blocking K25 residue in rUro by mutation to Ala resulted in a major decrease in rUro potency against all Kv channels tested, without perturbing the toxin's structure. Reciprocal mutations in the pore of Uro-sensitive Kv1.2 and Uro-resistant Kv1.5 channels revealed a direct interaction between Urotoxin and the Kv channel pore. Our experimental work supports postulating a mechanism of action in which occlusion of the permeation pathway by the K25 residue in Urotoxin is the basis of its Kv1 inhibitory activity. Docking analysis was consistent with occlusion of the pore by K25 and the requirement of a small, non-charged amino acid in the Kv1 channel vestibule to facilitate toxin-channel interactions. Finally, computational studies revealed key interactions between the amidated C-terminus of Urotoxin and a conserved Asp residue in the turret of Kv1 channels, offering a potential rationale for potency differences between native and recombinant Urotoxin.

6.
Insect Biochem Mol Biol ; 118: 103310, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31870846

RESUMO

Many arthropod venom peptides have potential as bioinsecticides, drug leads, and pharmacological tools due to their specific neuromodulatory functions. Assassin flies (Asilidae) are a family of predaceous dipterans that produce a unique and complex peptide-rich venom for killing insect prey and deterring predators. However, very little is known about the structure and function of their venom peptides. We therefore used an E. coli periplasmic expression system to express four disulfide-rich peptides that we previously reported to exist in venom of the giant assassin fly Dolopus genitalis. After purification, each recombinant peptide eluted from a C18 column at a position closely matching its natural counterpart, strongly suggesting adoption of the native tertiary fold. Injection of purified recombinant peptides into blowflies (Lucilia cuprina) and crickets (Acheta domestica) revealed that two of the four recombinant peptides, named rDg3b and rDg12, inhibited escape behaviour in a manner that was rapid in onset (<1 min) and reversible. Homonuclear NMR solution structures revealed that rDg3b and rDg12 adopt cystine-stabilised α/ß defensin and inhibitor cystine knot folds, respectively. Although the closest known homologues of rDg3b at the level of primary structure are dipteran antimicrobial peptides such as sapecin and lucifensin, a DALI search showed that the tertiary structure of rDg3b most closely resembles the KV11.1-specific α-potassium channel toxin CnErg1 from venom of the scorpion Centruroides noxius. This is mainly due to the deletion of a large, unstructured loop between the first and second cysteine residues present in Dg3b homologues from non-asiloid, but not existing in asiloid, species. Patch-clamp electrophysiology experiments revealed that rDg3b shifts the voltage-dependence of KV11.1 channel activation to more depolarised potentials, but has no effect on KV1.3, KV2.1, KV10.1, KCa1.1, or the Drosophila Shaker channel. Although rDg12 shares the inhibitor cystine knot structure of many gating modifier toxins, rDg12 did not affect any of these KV channel subtypes. Our results demonstrate that multiple disulfide-rich peptide scaffolds have been convergently recruited into asilid and other animal venoms, and they provide insight into the molecular evolution accompanying their weaponisation.

7.
Mar Drugs ; 17(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842369

RESUMO

Serine proteases play pivotal roles in normal physiology and a spectrum of patho-physiological processes. Accordingly, there is considerable interest in the discovery and design of potent serine protease inhibitors for therapeutic applications. This led to concerted efforts to discover versatile and robust molecular scaffolds for inhibitor design. This investigation is a bioprospecting study that aims to isolate and identify protease inhibitors from the cnidarian Actinia tenebrosa. The study isolated two Kunitz-type protease inhibitors with very similar sequences but quite divergent inhibitory potencies when assayed against bovine trypsin, chymostrypsin, and a selection of human sequence-related peptidases. Homology modeling and molecular dynamics simulations of these inhibitors in complex with their targets were carried out and, collectively, these methodologies enabled the definition of a versatile scaffold for inhibitor design. Thermal denaturation studies showed that the inhibitors were remarkably robust. To gain a fine-grained map of the residues responsible for this stability, we conducted in silico alanine scanning and quantified individual residue contributions to the inhibitor's stability. Sequences of these inhibitors were then used to search for Kunitz homologs in an A. tenebrosa transcriptome library, resulting in the discovery of a further 14 related sequences. Consensus analysis of these variants identified a rich molecular diversity of Kunitz domains and expanded the palette of potential residue substitutions for rational inhibitor design using this domain.


Assuntos
Cnidários/classificação , Serina Proteases/efeitos dos fármacos , Inibidores de Serino Proteinase/farmacologia , Animais , Bovinos , Quimotripsina/antagonistas & inibidores , Quimotripsina/metabolismo , Simulação por Computador , Humanos , Simulação de Dinâmica Molecular , Serina Proteases/metabolismo , Inibidores de Serino Proteinase/isolamento & purificação , Tripsina/efeitos dos fármacos , Tripsina/metabolismo , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/farmacologia
8.
Toxins (Basel) ; 11(11)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752210

RESUMO

Assassin bugs (Reduviidae) produce venoms that are insecticidal, and which induce pain in predators, but the composition and function of their individual venom components is poorly understood. We report findings on the venom system of the red-spotted assassin bug Platymeris rhadamanthus, a large species of African origin that is unique in propelling venom as a projectile weapon when threatened. We performed RNA sequencing experiments on venom glands (separate transcriptomes of the posterior main gland, PMG, and the anterior main gland, AMG), and proteomic experiments on venom that was either defensively propelled or collected from the proboscis in response to electrostimulation. We resolved a venom proteome comprising 166 polypeptides. Both defensively propelled venom and most venom samples collected in response to electrostimulation show a protein profile similar to the predicted secretory products of the PMG, with a smaller contribution from the AMG. Pooled venom samples induce calcium influx via membrane lysis when applied to mammalian neuronal cells, consistent with their ability to cause pain when propelled into the eyes or mucus membranes of potential predators. The same venom induces rapid paralysis and death when injected into fruit flies. These data suggest that the cytolytic, insecticidal venom used by reduviids to capture prey is also a highly effective defensive weapon when propelled at predators.

9.
Bioconjug Chem ; 30(11): 2879-2888, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31647222

RESUMO

Twenty million Americans suffer from peripheral nerve injury caused by trauma and medical disorders, resulting in a broad spectrum of potentially debilitating side effects. In one out of four cases, patients identify surgery as the root cause of their nerve injury. Particularly during tumor resections or after traumatic injuries, tissue distortion and poor visibility can challenge a surgeon's ability to precisely locate and preserve peripheral nerves. Intuitively, surgical outcomes would improve tremendously if nerves could be highlighted using an exogeneous contrast agent. In clinical practice, however, the current standard of care-visual examination and palpation-remains unchanged. To address this unmet clinical need, we explored the expression of voltage-gated sodium channel Nav1.7 as an intraoperative marker for the peripheral nervous system. We show that expression of Nav1.7 is high in peripheral nerves harvested from both human and mouse tissue. We further show that modification of a Nav1.7-selective peptide, Hsp1a, can serve as a targeted vector for delivering a fluorescent sensor to the peripheral nervous system. Ex vivo, we observe a high signal-to-noise ratio for fluorescently labeled Hsp1a in both histologically prepared and fresh tissue. Using a surgical fluorescent microscope, we show in a simulated clinical scenario that the identification of mouse sciatic nerves is possible, suggesting that fluorescently labeled Hsp1a tracers could be used to discriminate nerves from their surrounding tissues in a routine clinical setting.

10.
J Nat Prod ; 82(9): 2559-2567, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31532206

RESUMO

Animal venoms can play an important role in drug discovery, as they are a rich source of evolutionarily tuned compounds that target a variety of ion channels and receptors. To date, there are six FDA-approved drugs derived from animal venoms, with recent work using high-throughput platforms providing a variety of new therapeutic candidates. However, high-throughput methods for screening animal venoms against purinoceptors, one of the oldest signaling receptor families, have not been reported. Here, we describe a variety of quantitative fluorescent-based high-throughput screening (HTS) cell-based assays for screening animal venoms against ligand-gated P2X receptors. A diverse selection of 180 venoms from arachnids, centipedes, hymenopterans, and cone snails were screened, analyzed, and validated, both analytically and pharmacologically. Using this approach, we performed screens against human P2X3, P2X4, and P2X7 using three different fluorescent-based dyes on stable cell lines and isolated the active venom components. Our HTS assays are performed in 96-well format and allow simultaneous screening of multiple venoms on multiple targets, improving testing characteristics while minimizing costs, specimen material, and testing time. Moreover, utilizing our assays and applying them to the other natural product libraries, rather than venoms, might yield other novel natural products that modulate P2X activity.

11.
Cell ; 178(6): 1362-1374.e16, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31447178

RESUMO

TRPA1 is a chemosensory ion channel that functions as a sentinel for structurally diverse electrophilic irritants. Channel activation occurs through an unusual mechanism involving covalent modification of cysteine residues clustered within an amino-terminal cytoplasmic domain. Here, we describe a peptidergic scorpion toxin (WaTx) that activates TRPA1 by penetrating the plasma membrane to access the same intracellular site modified by reactive electrophiles. WaTx stabilizes TRPA1 in a biophysically distinct active state characterized by prolonged channel openings and low Ca2+ permeability. Consequently, WaTx elicits acute pain and pain hypersensitivity but fails to trigger efferent release of neuropeptides and neurogenic inflammation typically produced by noxious electrophiles. These findings provide a striking example of convergent evolution whereby chemically disparate animal- and plant-derived irritants target the same key allosteric regulatory site to differentially modulate channel activity. WaTx is a unique pharmacological probe for dissecting TRPA1 function and its contribution to acute and persistent pain.

12.
Nat Commun ; 10(1): 3067, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296851

RESUMO

WalKR (YycFG) is the only essential two-component regulator in the human pathogen Staphylococcus aureus. WalKR regulates peptidoglycan synthesis, but this function alone does not explain its essentiality. Here, to further understand WalKR function, we investigate a suppressor mutant that arose when WalKR activity was impaired; a histidine to tyrosine substitution (H271Y) in the cytoplasmic Per-Arnt-Sim (PASCYT) domain of the histidine kinase WalK. Introducing the WalKH271Y mutation into wild-type S. aureus activates the WalKR regulon. Structural analyses of the WalK PASCYT domain reveal a metal-binding site, in which a zinc ion (Zn2+) is tetrahedrally-coordinated by four amino acids including H271. The WalKH271Y mutation abrogates metal binding, increasing WalK kinase activity and WalR phosphorylation. Thus, Zn2+-binding negatively regulates WalKR. Promoter-reporter experiments using S. aureus confirm Zn2+ sensing by this system. Identification of a metal ligand recognized by the WalKR system broadens our understanding of this critical S. aureus regulon.


Assuntos
Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Staphylococcus aureus/metabolismo , Zinco/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cátions Bivalentes/metabolismo , Histidina/genética , Histidina Quinase/química , Histidina Quinase/genética , Simulação de Dinâmica Molecular , Mutação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Regulon/genética , Staphylococcus aureus/genética , Tirosina/genética
13.
Mar Drugs ; 17(6)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159357

RESUMO

Sea anemones produce venoms of exceptional molecular diversity, with at least 17 different molecular scaffolds reported to date. These venom components have traditionally been classified according to pharmacological activity and amino acid sequence. However, this classification system suffers from vulnerabilities due to functional convergence and functional promiscuity. Furthermore, for most known sea anemone toxins, the exact receptors they target are either unknown, or at best incomplete. In this review, we first provide an overview of the sea anemone venom system and then focus on the venom components. We have organised the venom components by distinguishing firstly between proteins and non-proteinaceous compounds, secondly between enzymes and other proteins without enzymatic activity, then according to the structural scaffold, and finally according to molecular target.


Assuntos
Venenos de Cnidários/química , Venenos de Cnidários/classificação , Toxinas Marinhas/química , Toxinas Marinhas/classificação , Animais , Modelos Moleculares , Anêmonas-do-Mar/química
14.
Vet Parasitol ; 270: 40-46, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31213240

RESUMO

Parasitic nematodes pose a major threat to livestock production worldwide. The blood-feeding parasite Haemonchus contortus is a key small-ruminant pathogen that causes anaemia, and thereby seriously impacts animal health and production. Control of this parasite relies largely upon broad-spectrum anthelmintics, but new drugs are urgently needed to combat the threat of widespread multidrug resistance. Repurposing drugs can accelerate the development pipeline by reducing costs and risks, and can be an effective way of quickly bringing new antiparasitic drugs to market. Diarylamidine compounds such as pentamidine and diminazene have been employed in the treatment of trypanosomiasis and leishmaniasis in both human and veterinary settings, but their activity against parasitic worms has not yet been reported. We screened a small panel of diarylamidine compounds against H. contortus to assess their potential to be repurposed as anthelmintic drugs. Pentamidine and diminazene inhibited H. contortus larval development at low micromolar concentrations (IC50 4.9 µM and 16.1 µM, respectively, in a drug-susceptible isolate) with no existing cross-resistance in two multidrug resistant isolates and a monepantel-resistant isolate. Combinations of pentamidine with commercial anthelmintics showed additive activity, with no significant synergism detected. Pentamidine and diminazene showed different life-stage patterns of activity; both were active against early stage larvae in development assays, but only diminazene was active against the infective L3 stage in migration assays. This suggests some differences in uptake of the two drugs across the nematode cuticle, or differences in the nature and expression patterns of their molecular targets. As pentamidine and diminazene have been reported to be potent inhibitors of mammalian acid-sensing ion channels (ASIC), we tested the activity of known ASIC inhibitors against H. contortus to probe whether these channels may represent potential anthelmintic targets in nematodes. Remarkably, the spider-venom peptide Hi1a, a potent inhibitor of ASIC1a, inhibited H. contortus larval development with an IC50 of 22.9 ± 1.9 µM. This study highlights the potential use of diarylamidines as anthelmintics, although their activity needs to be confirmed in vivo. In addition, our demonstration that ASIC inhibitors have anthelmintic activity raises the possibility that this family of ion channels may represent a novel anthelmintic target.


Assuntos
Anti-Helmínticos/farmacologia , Diminazena/farmacologia , Haemonchus/efeitos dos fármacos , Pentamidina/farmacologia , Animais , Antiprotozoários/farmacologia , Técnicas In Vitro , Concentração Inibidora 50
15.
Front Pharmacol ; 10: 577, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214027

RESUMO

Peptides derived from animal venoms provide important research tools for biochemical and pharmacological characterization of receptors, ion channels, and transporters. Some venom peptides have been developed into drugs (such as the synthetic ω-conotoxin MVIIA, ziconotide) and several are currently undergoing clinical trials for various clinical indications. Challenges in the development of peptides include their usually limited supply from natural sources, cost-intensive chemical synthesis, and potentially complicated stereoselective disulfide-bond formation in the case of disulfide-rich peptides. In particular, if extended structure-function analysis is performed or incorporation of stable isotopes for NMR studies is required, the comparatively low yields and high costs of synthesized peptides might constitute a limiting factor. Here we investigated the expression of the 4/7 α-conotoxin TxIA, a potent blocker at α3ß2 and α7 nicotinic acetylcholine receptors (nAChRs), and three analogs in the form of maltose binding protein fusion proteins in Escherichia coli. Upon purification via nickel affinity chromatography and release of the toxins by protease cleavage, HPLC analysis revealed one major peak with the correct mass for all peptides. The final yield was 1-2 mg of recombinant peptide per liter of bacterial culture. Two-electrode voltage clamp analysis on oocyte-expressed nAChR subtypes demonstrated the functionality of these peptides but also revealed a 30 to 100-fold potency decrease of expressed TxIA compared to chemically synthesized TxIA. NMR spectroscopy analysis of TxIA and two of its analogs confirmed that the decreased activity was due to an alternative disulfide linkage rather than the missing C-terminal amidation, a post-translational modification that is common in α-conotoxins. All peptides preferentially formed in the ribbon conformation rather than the native globular conformation. Interestingly, in the case of the α7 nAChR, but not the α3ß2 subtype, the loss of potency could be rescued by an R5D substitution. In conclusion, we demonstrate efficient expression of functional but alternatively folded ribbon TxIA variants in E. coli and provide the first structure-function analysis for a ribbon 4/7-α-conotoxin at α7 and α3ß2 nAChRs. Computational analysis based on these data provide evidence for a ribbon α-conotoxin binding mode that might be exploited to design ligands with optimized selectivity.

16.
J Biomol Struct Dyn ; : 1-10, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31038412

RESUMO

Although several plant protease inhibitors have been structurally characterized using X-ray crystallography, very few have been studied using NMR techniques. Here, we report an NMR study of the solution structure and dynamics of an inhibitory repeat domain (IRD) variant 12 from the wound-inducible Pin-II type proteinase inhibitor from Capsicum annuum. IRD variant 12 (IRD12) showed strong anti-metabolic activity against the Lepidopteran insect pest, Helicoverpa armigera. The NMR-derived three-dimensional structure of IRD12 reveals a three-stranded anti-parallel ß-sheet rigidly held together by four disulfide bridges and shows structural homology with known IRDs. It is interesting to note that the IRD12 structure containing ∼75% unstructured part still shows substantial amount of rigidity of N-H bond vectors with respect to its molecular motion. Communicated by Ramaswamy H. Sarma.

17.
Pest Manag Sci ; 75(9): 2437-2445, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31025461

RESUMO

Spider venoms are complex chemical arsenals that contain a rich variety of insecticidal toxins. However, the major toxin class in many spider venoms is disulfide-rich peptides known as knottins. The knotted three-dimensional fold of these mini-proteins provides them with exceptional chemical and thermal stability as well as resistance to proteases. In contrast with other bioinsecticides, which are often slow-acting, spider knottins are fast-acting neurotoxins. In addition to being potently insecticidal, some knottins have exceptional taxonomic selectivity, being lethal to key agricultural pests but innocuous to vertebrates and beneficial insects such as bees. The intrinsic oral activity of these peptides, combined with the ability of aerosolized knottins to penetrate insect spiracles, has enabled them to be developed commercially as eco-friendly bioinsecticides. Moreover, it has been demonstrated that spider-knottin transgenes can be used to engineer faster-acting entomopathogens and insect-resistant crops. © 2019 Society of Chemical Industry.


Assuntos
Proteínas de Artrópodes/farmacologia , Agentes de Controle Biológico/farmacologia , Miniproteínas Nó de Cistina/farmacologia , Controle de Insetos/métodos , Inseticidas/farmacologia , Venenos de Aranha/farmacologia
18.
Mol Ecol ; 28(9): 2272-2289, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30913335

RESUMO

Members of phylum Cnidaria are an ancient group of venomous animals and rely on a number of specialized tissues to produce toxins in order to fulfil a range of ecological roles including prey capture, defence against predators, digestion and aggressive encounters. However, limited comprehensive analyses of the evolution and expression of toxin genes currently exist for cnidarian species. In this study, we use genomic and transcriptomic sequencing data to examine gene copy number variation and selective pressure on toxin gene families in phylum Cnidaria. Additionally, we use quantitative RNA-seq and mass spectrometry imaging to understand expression patterns and tissue localization of toxin production in sea anemones. Using genomic data, we demonstrate that the first large-scale expansion and diversification of known toxin genes occurs in phylum Cnidaria, a process we also observe in other venomous lineages, which we refer to as convergent amplification. Our analyses of selective pressure on sea anemone toxin gene families reveal that purifying selection is the dominant mode of evolution for these genes and that phylogenetic inertia is an important determinant of toxin gene complement in this group. The gene expression and tissue localization data revealed that specific genes and proteins from toxin gene families show strong patterns of tissue and developmental-phase specificity in sea anemones. Overall, convergent amplification and phylogenetic inertia have strongly influenced the distribution and evolution of the toxin complement observed in sea anemones, while the production of venoms with different compositions across tissues is related to the functional and ecological roles undertaken by each tissue type.


Assuntos
Venenos de Cnidários/genética , Expressão Gênica , Anêmonas-do-Mar/genética , Animais , Venenos de Cnidários/química , Espectrometria de Massas , Filogenia , Seleção Genética , Análise de Sequência de RNA
19.
Biochem Pharmacol ; 163: 381-390, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30849303

RESUMO

Acid-sensing ion channels (ASICs) are primary acid sensors in the mammalian nervous system that are activated by protons under conditions of local acidosis. They have been implicated in a range of pathologies including ischemic stroke (ASIC1a subtype) and peripheral pain (ASIC1b and ASIC3). Although the spider venom peptide PcTx1 is the best-studied ASIC modulator and is neuroprotective in rodent models of ischemic stroke, little experimental work has been done to examine its molecular interaction with human ASIC1a or the off-target ASIC1b. The complementary face of the acidic pocket binding site of PcTx1 is where these channels differ in sequence. We show here that although PcTx1 is 10-fold less potent at human ASIC1a than the rat channel, the apparent affinity for the two channels is comparable. We examined the pharmacophore of PcTx1 for human ASIC1a and rat ASIC1b, and show that inhibitory and stimulatory effects at each ASIC1 variant is driven mostly by a shared set of core peptide pharmacophore residues that bind to the thumb domain, while peptide residues that interact with the complementary face of the biding site underlie species and subtype-dependent differences in activity that may allow manipulation of ASIC1 variant selectivity. Finally, the stimulatory effect of PcTx1 on rat ASIC1a when applied under mildly alkaline pH correlates with low receptor occupancy. These new insights into the interactions between PcTx1 with ASIC1 subtypes demonstrates the complexity of its mechanism of action, and highlights important implications to consider when using PcTx1 as a pharmacological tool to study ASIC function.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Peptídeos/metabolismo , Venenos de Aranha/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Animais , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Modelos Moleculares , Mutação , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Peptídeos/química , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Subunidades Proteicas , Ratos , Especificidade da Espécie , Venenos de Aranha/química , Xenopus laevis
20.
Toxins (Basel) ; 10(11)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400621

RESUMO

Assassin flies (Diptera: Asilidae) inject paralysing venom into insect prey during hunting, but their venoms are poorly characterised in comparison to those produced by spiders, scorpions, or hymenopteran insects. Here we investigated the composition of the venom of the giant Australian assassin fly Dolopus genitalis using a combination of insect microinjection assays, calcium imaging assays of mammalian sensory neurons, proteomics and transcriptomics. Injection of venom into blowflies (Lucilia cuprina) produced rapid contractile paralysis (PD50 at 1 min = 3.1 µg per fly) followed by death, and also caused immediate activation of mouse dorsal root ganglion neurons (at 50 ng/µL). These results are consistent with venom use for both prey capture and predator deterrence. Paragon searches of tandem mass spectra of venom against a translated thoracic gland RNA-Seq database identified 122 polypeptides present in the venom, including six linear and 21 disulfide-rich peptides. Some of these disulfide-rich peptides display sequence homology to peptide families independently recruited into other animal venoms, including inhibitor cystine knots, cystine-stabilised α/ß defensins, Kazal peptides, and von Willebrand factors. Numerous enzymes are present in the venom, including 35 proteases of the S1 family, proteases of the S10, C1A, M12A, M14, and M17 families, and phosphatase, amylase, hydrolase, nuclease, and dehydrogenase-like proteins. These results highlight convergent molecular evolution between the assassin flies and other venomous animals, as well as the unique and rich molecular composition of assassin fly venom.


Assuntos
Venenos de Artrópodes/toxicidade , Dípteros/metabolismo , Proteínas de Insetos/metabolismo , Proteoma , Sequência de Aminoácidos , Animais , Venenos de Artrópodes/química , Relação Dose-Resposta a Droga , Proteínas de Insetos/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA