Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BioDrugs ; 35(5): 473-503, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34613592

RESUMO

In the last two decades, understanding of inflammatory bowel disease (IBD) immunopathogenesis has expanded considerably. Histopathological examination of the intestinal mucosa in IBD demonstrates the presence of a chronic inflammatory cell infiltrate. Research has focused on identifying mechanisms of immune cell trafficking to the gastrointestinal tract that may represent effective gut-selective targets for IBD therapy whilst avoiding systemic immunosuppression that may be associated with off-target adverse effects such as infection and malignancy. Integrins are cell surface receptors that can bind to cellular adhesion molecules to mediate both leukocyte homing and retention. In 2014, Vedolizumab (Entyvio®) was the first anti-integrin (anti-α4ß7 monoclonal antibody) treatment to be approved for use in IBD. Several other anti-integrin therapies are currently in advanced stages of development, including novel orally administered small-molecule drugs. Drugs targeting alternative trafficking mechanisms such as mucosal addressin cellular adhesion molecule-1 and sphingosine-1-phosphate receptors are also being evaluated. Here, we summarise key established and emerging therapies targeting leukocyte trafficking that may play an important role in realising the goal of stratified precision medicine in IBD care.


Assuntos
Doenças Inflamatórias Intestinais , Anticorpos Monoclonais , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Integrinas , Leucócitos
2.
J Immunol ; 207(9): 2245-2254, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561227

RESUMO

Targeting interactions between α4ß7 integrin and endothelial adhesion molecule MAdCAM-1 to inhibit lymphocyte migration to the gastrointestinal tract is an effective therapy in inflammatory bowel disease (IBD). Following lymphocyte entry into the mucosa, a subset of these cells expresses αEß7 integrin, which is expressed on proinflammatory lymphocytes, to increase cell retention. The factors governing lymphocyte migration into the intestinal mucosa and αE integrin expression in healthy subjects and IBD patients remain incompletely understood. We evaluated changes in factors involved in lymphocyte migration and differentiation within tissues. Both ileal and colonic tissue from active IBD patients showed upregulation of ICAM-1, VCAM-1, and MAdCAM-1 at the gene and protein levels compared with healthy subjects and/or inactive IBD patients. ß1 and ß7 integrin expression on circulating lymphocytes was similar across groups. TGF-ß1 treatment induced expression of αE on both ß7+ and ß7- T cells, suggesting that cells entering the mucosa independently of MAdCAM-1/α4ß7 can become αEß7+ ITGAE gene polymorphisms did not alter protein induction following TGF-ß1 stimulation. Increased phospho-SMAD3, which is directly downstream of TGF-ß, and increased TGF-ß-responsive gene expression were observed in the colonic mucosa of IBD patients. Finally, in vitro stimulation experiments showed that baseline ß7 expression had little effect on cytokine, chemokine, transcription factor, and effector molecule gene expression in αE+ and αE- T cells. These findings suggest cell migration to the gut mucosa may be altered in IBD and α4ß7-, and α4ß7+ T cells may upregulate αEß7 in response to TGF-ß once within the gut mucosa.

3.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445337

RESUMO

In fibrotic diseases, myofibroblasts derive from a range of cell types including endothelial-to-mesenchymal transition (EndMT). Increasing evidence suggests that miRNAs are key regulators in biological processes but their profile is relatively understudied in EndMT. In human umbilical vein endothelial cells (HUVEC), EndMT was induced by treatment with TGFß2 and IL1ß. A significant decrease in endothelial markers such as VE-cadherin, CD31 and an increase in mesenchymal markers such as fibronectin were observed. In parallel, miRNA profiling showed that miR-126-3p was down-regulated in HUVECs undergoing EndMT and over-expression of miR-126-3p prevented EndMT, maintaining CD31 and repressing fibronectin expression. EndMT was investigated using lineage tracing with transgenic Cdh5-Cre-ERT2; Rosa26R-stop-YFP mice in two established models of fibrosis: cardiac ischaemic injury and kidney ureteric occlusion. In both cardiac and kidney fibrosis, lineage tracing showed a significant subpopulation of endothelial-derived cells expressed mesenchymal markers, indicating they had undergone EndMT. In addition, miR-126-3p was restricted to endothelial cells and down-regulated in murine fibrotic kidney and heart tissue. These findings were confirmed in patient kidney biopsies. MiR-126-3p expression is restricted to endothelial cells and is down-regulated during EndMT. Over-expression of miR-126-3p reduces EndMT, therefore, it could be considered for miRNA-based therapeutics in fibrotic organs.


Assuntos
Transdiferenciação Celular/genética , Rim/patologia , MicroRNAs/fisiologia , Miocárdio/patologia , Animais , Células Cultivadas , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Fibrose/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Rim/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia
4.
Cancers (Basel) ; 13(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34298676

RESUMO

Chemokine receptor CCR7 is implicated in the metastasis of breast cancer to the lymph nodes. Chemokine function is dependent upon their binding to both cell-surface heparan sulphate (HS) and to their specific receptors; thus, the role of HS in CCR7-mediated lymph node metastasis was investigated by creating a non-HS binding chemokine CCL21 (mut-CCL21). Mut-CCL21 (Δ103-134) induced leukocyte chemotaxis in diffusion gradients but did not stimulate trans-endothelial migration of PBMCs (p < 0.001) and 4T1-Luc cells (p < 0.01). Furthermore, the effect of heparin and HS on the chemotactic properties of wild-type (WT) and mut-CCL21 was examined. Interestingly, heparin and HS completely inhibit the chemotaxis mediated by WT-CCL21 at 250 and 500 µg/mL, whereas minimal effect was seen with mut-CCL21. This difference could potentially be attributed to reduced HS binding, as surface plasmon resonance spectroscopy showed that mut-CCL21 did not significantly bind HS compared to WT-CCL21. A murine model was used to assess the potential of mut-CCL21 to prevent lymph node metastasis in vivo. Mice were injected with 4T1-Luc cells in the mammary fat pad and treated daily for a week with 20 µg mut-CCL21. Mice were imaged weekly with IVIS and sacrificed on day 18. Luciferase expression was significantly reduced in lymph nodes from mice that had been treated with mut-CCL21 compared to the control (p = 0.0148), suggesting the potential to target chemokine binding to HS as a therapeutic option.

5.
Immunology ; 157(2): 173-184, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31013364

RESUMO

Leucocyte recruitment is critical during many acute and chronic inflammatory diseases. Chemokines are key mediators of leucocyte recruitment during the inflammatory response, by signalling through specific chemokine G-protein-coupled receptors (GPCRs). In addition, chemokines interact with cell-surface glycosaminoglycans (GAGs) to generate a chemotactic gradient. The chemokine interleukin-8/CXCL8, a prototypical neutrophil chemoattractant, is characterized by a long, highly positively charged GAG-binding C-terminal region, absent in most other chemokines. To examine whether the CXCL8 C-terminal peptide has a modulatory role in GAG binding during neutrophil recruitment, we synthesized the wild-type CXCL8 C-terminal [CXCL8 (54-72)] (Peptide 1), a peptide with a substitution of glutamic acid (E) 70 with lysine (K) (Peptide 2) to increase positive charge; and also, a scrambled sequence peptide (Peptide 3). Surface plasmon resonance showed that Peptide 1, corresponding to the core CXCL8 GAG-binding region, binds to GAG but Peptide 2 binding was detected at lower concentrations. In the absence of cellular GAG, the peptides did not affect CXCL8-induced calcium signalling or neutrophil chemotaxis along a diffusion gradient, suggesting no effect on GPCR binding. All peptides equally inhibited neutrophil adhesion to endothelial cells under physiological flow conditions. Peptide 2, with its greater positive charge and binding to polyanionic GAG, inhibited CXCL8-induced neutrophil transendothelial migration. Our studies suggest that the E70K CXCL8 peptide, may serve as a lead molecule for further development of therapeutic inhibitors of neutrophil-mediated inflammation based on modulation of chemokine-GAG binding.


Assuntos
Adesão Celular/imunologia , Movimento Celular/imunologia , Células Endoteliais/imunologia , Interleucina-8/imunologia , Neutrófilos/imunologia , Células Endoteliais/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Neutrófilos/patologia , Peptídeos/imunologia
7.
FASEB Bioadv ; 1(5): 332-343, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32123836

RESUMO

Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease. Approximately 30% of patients do not respond to therapy with ursodeoxycholic acid (UDCA). Previous studies have implicated increased senescence of cholangiocytes in patients who do not respond to UDCA. This may increase the release of cytokines which drive pathogenic T cell polarization. As FXR agonists are beneficial in treating UDCA non-responsive patients, the current study was designed to model the interactions between cholangiocytes and CD4+ T cells to investigate potential immunomodulatory mechanisms of bile acid receptor agonists. Human cholangiocytes were co-cultured with CD4+ T cells to model the biliary stress response. Senescent cholangiocytes were able to polarize T cells toward a Th17 phenotype and suppressed expression of FoxP3 (P = 0.0043). Whilst FXR and TGR5 receptor agonists were unable directly to alter cholangiocyte cytokine expression, FGF19 was capable of significantly reducing IL-6 release (P = 0.044). Bile acid receptor expression was assessed in PBC patients with well-characterized responsiveness to UDCA therapy. A reduction in FXR staining was observed in both cholangiocytes and hepatocytes in PBC patients without adequate response to UDCA. Increased IL-6 expression by senescent cholangiocytes represents a potential mechanism by which biliary damage in PBC could contribute to excessive inflammation.

8.
Int J Mol Sci ; 19(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441765

RESUMO

Upon binding with the chemokine CXCL12, the chemokine receptor CXCR4 has been shown to promote breast cancer progression. This process, however, can be affected by the expression of the atypical chemokine receptor ACKR3. Given ACKR3's ability to form heterodimers with CXCR4, we investigated how dual expression of both receptors differed from their lone expression in terms of their signalling pathways. We created single and double CXCR4 and/or ACKR3 Chinese hamster ovary (CHO) cell transfectants. ERK and Akt phosphorylation after CXCL12 stimulation was assessed and correlated with receptor internalization. Functional consequences in cell migration and proliferation were determined through wound healing assays and calcium flux. Initial experiments showed that CXCR4 and ACKR3 were upregulated in primary breast cancer and that CXCR4 and ACKR3 could form heterodimers in transfected CHO cells. This co-expression modified CXCR4's Akt activation after CXCL12's stimulation but not ERK phosphorylation (p < 0.05). To assess this signalling disparity, receptor internalization was assessed and it was observed that ACKR3 was recycled to the surface whilst CXCR4 was degraded (p < 0.01), a process that could be partially inhibited with a proteasome inhibitor (p < 0.01). Internalization was also assessed with the ACKR3 agonist VUF11207, which caused both CXCR4 and ACKR3 to be degraded after internalization (p < 0.05 and p < 0.001), highlighting its potential as a dual targeting drug. Interestingly, we observed that CXCR4 but not ACKR3, activated calcium flux after CXCL12 stimulation (p < 0.05) and its co-expression could increase cellular migration (p < 0.01). These findings suggest that both receptors can signal through ERK and Akt pathways but co-expression can alter their kinetics and internalization pathways.


Assuntos
Neoplasias da Mama/metabolismo , Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Feminino , Humanos , Camundongos , Receptores CXCR/genética
9.
J Crohns Colitis ; 12(10): 1191-1199, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29912405

RESUMO

Background: Recent findings suggest that αE expression is enriched on effector T cells and that intestinal αE+ T cells have increased expression of inflammatory cytokines. αE integrin expression is a potential predictive biomarker for response to etrolizumab, a monoclonal antibody against ß7 integrin that targets both α4ß7 and αEß7. We evaluated the prevalence and localization of αE+ cells as well as total αE gene expression in healthy and inflammatory bowel disease patients. Methods: αE+ cells were identified in ileal and colonic biopsies by immunohistochemistry and counted using an automated algorithm. Gene expression was assessed by quantitative reverse-transcriptase polymerase chain reaction. Results: In both healthy and inflammatory bowel disease patients, significantly more αE+ cells were present in the epithelium and lamina propria of ileal compared with colonic biopsies. αE gene expression levels were also significantly higher in ileal compared with colonic biopsies. Paired biopsies from the same patient showed moderate correlation of αE expression between the ileum and colon. Inflammation did not affect αE expression, and neither endoscopy nor histology scores correlated with αE gene expression. αE expression was not different between patients based on concomitant medication use except 5-aminosalicylic acid. Conclusion: αE+ cells, which have been shown to have inflammatory potential, are increased in the ileum in comparison with the colon in both Crohn's disease and ulcerative colitis, as well as in healthy subjects. In inflammatory bowel disease patients, αE levels are stable, regardless of inflammatory status or most concomitant medications, which could support its use as a biomarker for etrolizumab.


Assuntos
Colo , Íleo , Doenças Inflamatórias Intestinais , Adulto , Antígenos CD , Biópsia/métodos , Colo/imunologia , Colo/patologia , Correlação de Dados , Endoscopia do Sistema Digestório/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Íleo/imunologia , Íleo/patologia , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Cadeias alfa de Integrinas , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade
11.
Int J Mol Sci ; 18(8)2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28771176

RESUMO

The primary function of chemokines is to direct the migration of leukocytes to the site of injury during inflammation. The effects of chemokines are modulated by several means, including binding to G-protein coupled receptors (GPCRs), binding to glycosaminoglycans (GAGs), and through post-translational modifications (PTMs). GAGs, present on cell surfaces, bind chemokines released in response to injury. Chemokines bind leukocytes via their GPCRs, which directs migration and contributes to local inflammation. Studies have shown that GAGs or GAG-binding peptides can be used to interfere with chemokine binding and reduce leukocyte recruitment. Post-translational modifications of chemokines, such as nitration, which occurs due to the production of reactive species during oxidative stress, can also alter their biological activity. This review describes the regulation of chemokine function by GAG-binding ability and by post-translational nitration. These are both aspects of chemokine biology that could be targeted if the therapeutic potential of chemokines, like CXCL8, to modulate inflammation is to be realised.


Assuntos
Quimiocinas/metabolismo , Glicosaminoglicanos/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Receptores de Quimiocinas/metabolismo , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia
12.
Front Nutr ; 4: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28534028

RESUMO

Large randomized controlled trials (RCTs) in preterm infants offer unique opportunities for mechanistic evaluation of the risk factors leading to serious diseases, as well as the actions of interventions designed to prevent them. Necrotizing enterocolitis (NEC) a serious inflammatory gut condition and late-onset sepsis (LOS) are common feeding and nutrition-related problems that may cause death or serious long-term morbidity and are key outcomes in two current UK National Institutes for Health Research (NIHR) trials. Speed of increasing milk feeds trial (SIFT) randomized preterm infants to different rates of increases in milk feeds with a primary outcome of survival without disability at 2 years corrected age. Enteral lactoferrin in neonates (ELFIN) randomizes infants to supplemental enteral lactoferrin or placebo with a primary outcome of LOS. This is a protocol for the mechanisms affecting the gut of preterm infants in enteral feeding trials (MAGPIE) study and is funded by the UK NIHR Efficacy and Mechanistic Evaluation programme. MAGPIE will recruit ~480 preterm infants who were enrolled in SIFT or ELFIN. Participation in MAGPIE does not change the main trial protocols and uses non-invasive sampling of stool and urine, along with any residual resected gut tissue if infants required surgery. Trial interventions may involve effects on gut microbes, metabolites (e.g., short-chain fatty acids), and aspects of host immune function. Current hypotheses suggest that NEC and/or LOS are due to a dysregulated immune system in the context of gut dysbiosis, but mechanisms have not been systematically studied within large RCTs. Microbiomic analysis will use next-generation sequencing, and metabolites will be assessed by mass spectrometry to detect volatile organic and other compounds produced by microbes or the host. We will explore differences between disease cases and controls, as well as exploring the actions of trial interventions. Impacts of this research are multiple: translation of knowledge of mechanisms promoting gut health may explain outcomes or suggest alternate strategies to improve health. Results may identify new non-invasive diagnostic or monitoring techniques, preventative or treatment strategies for NEC or LOS, or provide data useful for risk stratification in future studies. Mechanistic evaluation might be especially informative where there are not clear effects on the primary outcome (ISRCTN 12554594).

13.
J Crohns Colitis ; 11(5): 610-620, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453768

RESUMO

Background and Aims: The αEß7 integrin is crucial for retention of T lymphocytes at mucosal surfaces through its interaction with E-cadherin. Pathogenic or protective functions of these cells during human intestinal inflammation, such as ulcerative colitis [UC], have not previously been defined, with understanding largely derived from animal model data. Defining this phenotype in human samples is important for understanding UC pathogenesis and is of translational importance for therapeutic targeting of αEß7-E-cadherin interactions. Methods: αEß7+ and αEß7- colonic T cell localization, inflammatory cytokine production and expression of regulatory T cell-associated markers were evaluated in cohorts of control subjects and patients with active UC by immunohistochemistry, flow cytometry and real-time PCR of FACS-purified cell populations. Results: CD4+αEß7+ T lymphocytes from both healthy controls and UC patients had lower expression of regulatory T cell-associated genes, including FOXP3, IL-10, CTLA-4 and ICOS in comparison with CD4+αEß7- T lymphocytes. In UC, CD4+αEß7+ lymphocytes expressed higher levels of IFNγ and TNFα in comparison with CD4+αEß7- lymphocytes. Additionally the CD4+αEß7+ subset was enriched for Th17 cells and the recently described Th17/Th1 subset co-expressing both IL-17A and IFNγ, both of which were found at higher frequencies in UC compared to control. Conclusion: αEß7 integrin expression on human colonic CD4+ T cells was associated with increased production of pro-inflammatory Th1, Th17 and Th17/Th1 cytokines, with reduced expression of regulatory T cell-associated markers. These data suggest colonic CD4+αEß7+ T cells are pro-inflammatory and may play a role in UC pathobiology.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Colite Ulcerativa/imunologia , Colo/citologia , Integrinas/imunologia , Adulto , Idoso , Estudos de Casos e Controles , Colite Ulcerativa/metabolismo , Colo/imunologia , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
14.
Sci Rep ; 7: 44384, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28290520

RESUMO

Chemokines promote leukocyte recruitment during inflammation. The oxidative burst is an important effector mechanism, this leads to the generation of reactive nitrogen species (RNS), including peroxynitrite (ONOO). The current study was performed to determine the potential for nitration to alter the chemical and biological properties of the prototypical CC chemokine, CCL2. Immunofluorescence was performed to assess the presence of RNS in kidney biopsies. Co-localisation was observed between RNS-modified tyrosine residues and the chemokine CCL2 in diseased kidneys. Nitration reduced the potential of CCL2 to stimulate monocyte migration in diffusion gradient chemotaxis assays (p < 0.05). This was consistent with a trend towards reduced affinity of the nitrated chemokine for its cognate receptor CCR2b. The nitrated chemokine was unable to induce transendothelial monocyte migration in vitro and failed to promote leukocyte recruitment when added to murine air pouches (p < 0.05). This could potentially be attributed to reduced glycosaminoglycan binding ability, as surface plasmon resonance spectroscopy showed that nitration reduced heparan sulphate binding by CCL2. Importantly, intravenous administration of nitrated CCL2 also inhibited the normal recruitment of leukocytes to murine air pouches filled with unmodified CCL2. Together these data suggest that nitration of CCL2 during inflammation provides a mechanism to limit and resolve acute inflammation.


Assuntos
Quimiocina CCL2/metabolismo , Inflamação/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Receptores CCR2/metabolismo , Animais , Sítios de Ligação , Movimento Celular/genética , Quimiocina CCL2/química , Quimiocinas/metabolismo , Inflamação/patologia , Leucócitos/metabolismo , Camundongos , Monócitos/metabolismo , Estresse Oxidativo/genética , Ácido Peroxinitroso/química , Ácido Peroxinitroso/metabolismo , Espécies Reativas de Nitrogênio/química , Receptores CCR2/genética , Tirosina/metabolismo
15.
Oncotarget ; 7(47): 76471-76478, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27835611

RESUMO

Cobalt-containing metal-on-metal hip replacements are associated with adverse reactions to metal debris (ARMD), including inflammatory pseudotumours, osteolysis, and aseptic implant loosening. The exact cellular and molecular mechanisms leading to these responses are unknown. Cobaltions (Co2+) activate human Toll-like receptor 4 (TLR4), an innate immune receptor responsible for inflammatory responses to Gram negative bacterial lipopolysaccharide (LPS).We investigated the effect of Co2+-mediated TLR4 activation on human microvascular endothelial cells (HMEC-1), focusing on the secretion of key inflammatory cytokines and expression of adhesion molecules. We also studied the role of TLR4 in Co2+-mediated adhesion molecule expression in MonoMac 6 macrophages.We show that Co2+ increases secretion of inflammatory cytokines, including IL-6 and IL-8, in HMEC-1. The effects are TLR4-dependent as they can be prevented with a small molecule TLR4 antagonist. Increased TLR4-dependent expression of intercellular adhesion molecule 1 (ICAM1) was also observed in endothelial cells and macrophages. Furthermore, we demonstrate for the first time that Co2+ activation of TLR4 upregulates secretion of a soluble adhesion molecule, sICAM-1, in both endothelial cells and macrophages. Although sICAM-1 can be generated through activity of matrix metalloproteinase-9 (MMP-9), we did not find any changes in MMP9 expression following Co2+ stimulation.In summary we show that Co2+ can induce endothelial inflammation via activation of TLR4. We also identify a role for TLR4 in Co2+-mediated changes in adhesion molecule expression. Finally, sICAM-1 is a novel target for further investigation in ARMD studies.


Assuntos
Cobalto/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Receptor 4 Toll-Like/agonistas , Citocinas/metabolismo , Ativação Enzimática , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo
16.
Biochem Biophys Rep ; 7: 374-378, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28955928

RESUMO

Metal-on-metal (MoM) hip replacements, often manufactured from a cobalt-chrome alloy, are associated with adverse reactions including soft tissue necrosis and osteolysis. Histopathological analysis of MoM peri-implant tissues reveals an inflammatory cell infiltrate that includes macrophages, monocytes and neutrophils. Toll-like receptor 4 (TLR4) is an innate immune receptor activated by bacterial lipopolysaccharide. Recent studies have demonstrated that cobalt ions from metal-on-metal joints also activate human TLR4, increasing cellular secretion of inflammatory chemokines including interleukin-8 (IL-8, CXCL8) and CCL2. Chemokines recruit immune cells to the site of inflammation, and their overall effect depends on the chemokine profile produced. This study investigated the effect of cobalt on the secretion of inflammatory cytokines CCL20 and IL-6. The chemotactic potential of conditioned media from a cobalt-stimulated human monocyte cell line on primary monocytes and neutrophils was investigated using an in vitro transwell migration assay. The role of TLR4 in observed effects was studied using a small molecule TLR4-specific antagonist. Cobalt ions significantly increased release of CCL2 and IL-6 by MonoMac 6 cells (P<0.001). Conditioned media from cobalt-stimulated cells significantly increased monocyte and neutrophil chemotaxis in vitro (P<0.001). These effects were abrogated by the TLR4 antagonist (P<0.001) suggesting that they occur through cobalt activation of TLR4. This study demonstrates the role of TLR4 in cobalt-mediated immune cell chemotaxis and provides a potential mechanism by which cobalt ions may contribute to the immune cell infiltrate surrounding failed metal hip replacements. It also highlights the TLR4 signalling pathway as a potential therapeutic target in preventing cobalt-mediated inflammation.

17.
Gastroenterology ; 150(2): 477-87.e9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26522261

RESUMO

BACKGROUND & AIMS: Etrolizumab is a humanized monoclonal antibody against the ß7 integrin subunit that has shown efficacy vs placebo in patients with moderate to severely active ulcerative colitis (UC). Patients with colon tissues that expressed high levels of the integrin αE gene (ITGAE) appeared to have the best response. We compared differences in colonic expression of ITGAE and other genes between patients who achieved clinical remission with etrolizumab vs those who did. METHODS: We performed a retrospective analysis of data collected from 110 patients with UC who participated in a phase 2 placebo-controlled trial of etrolizumab, as well as from 21 patients with UC or without inflammatory bowel disease (controls) enrolled in an observational study at a separate site. Colon biopsies were collected from patients in both studies and analyzed by immunohistochemistry and gene expression profiling. Mononuclear cells were isolated and analyzed by flow cytometry. We identified biomarkers associated with response to etrolizumab. In the placebo-controlled trial, clinical remission was defined as total Mayo Clinic Score ≤2, with no individual subscore >1, and mucosal healing was defined as endoscopic score ≤1. RESULTS: Colon tissues collected at baseline from patients who had a clinical response to etrolizumab expressed higher levels of T-cell-associated genes than patients who did not respond (P < .05). Colonic CD4(+) integrin αE(+) cells from patients with UC expressed higher levels of granzyme A messenger RNA (GZMA mRNA) than CD4(+) αE(-) cells (P < .0001); granzyme A and integrin αE protein were detected in the same cells. Of patients receiving 100 mg etrolizumab, a higher proportion of those with high levels of GZMA mRNA (41%) or ITGAE mRNA (38%) than those with low levels of GZMA (6%) or ITGAE mRNA (13%) achieved clinical remission (P < .05) and mucosal healing (41% GZMA(high) vs 19% GZMA(low) and 44% ITGAE(high) vs 19% ITGAE(low)). Compared with ITGAE(low) and GZMA(low) patients, patients with ITGAE(high) and GZMA(high) had higher baseline numbers of epithelial crypt-associated integrin αE(+) cells (P < .01 for both), but a smaller number of crypt-associated integrin αE(+) cells after etrolizumab treatment (P < .05 for both). After 10 weeks of etrolizumab treatment, expression of genes associated with T-cell activation and genes encoding inflammatory cytokines decreased by 40%-80% from baseline (P < .05) in patients with colon tissues expressing high levels of GZMA at baseline. CONCLUSIONS: Levels of GZMA and ITGAE mRNAs in colon tissues can identify patients with UC who are most likely to benefit from etrolizumab; expression levels decrease with etrolizumab administration in biomarker(high) patients. Larger, prospective studies of markers are needed to assess their clinical value.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colo/efeitos dos fármacos , Fármacos Gastrointestinais/uso terapêutico , Granzimas/metabolismo , Cadeias alfa de Integrinas/metabolismo , Antígenos CD/genética , Biópsia , Ensaios Clínicos Fase II como Assunto , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/enzimologia , Colite Ulcerativa/genética , Colo/enzimologia , Colo/patologia , Perfilação da Expressão Gênica/métodos , Granzimas/genética , Humanos , Imuno-Histoquímica , Cadeias alfa de Integrinas/genética , Valor Preditivo dos Testes , RNA Mensageiro/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto , Indução de Remissão , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Cicatrização/efeitos dos fármacos
18.
J Biol Chem ; 289(29): 20295-306, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24878958

RESUMO

Heparan sulfate (HS) plays a crucial role in the fibrosis associated with chronic allograft dysfunction by binding and presenting cytokines and growth factors to their receptors. These interactions critically depend on the distribution of 6-O-sulfated glucosamine residues, which is generated by glucosaminyl-6-O-sulfotransferases (HS6STs) and selectively removed by cell surface HS-6-O-endosulfatases (SULFs). Using human renal allografts we found increased expression of 6-O-sulfated HS domains in tubular epithelial cells during chronic rejection as compared with the controls. Stimulation of renal epithelial cells with TGF-ß induced SULF2 expression. To examine the role of 6-O-sulfated HS in the development of fibrosis, we generated stable HS6ST1 and SULF2 overexpressing renal epithelial cells. Compared with mock transfectants, the HS6ST1 transfectants showed significantly increased binding of FGF2 (p = 0.0086) and pERK activation. HS6ST1 transfectants displayed a relative increase in mono-6-O-sulfated disaccharides accompanied by a decrease in iduronic acid 2-O-sulfated disaccharide structures. In contrast, SULF2 transfectants showed significantly reduced FGF2 binding and phosphorylation of ERK. Structural analysis of HS showed about 40% down-regulation in 6-O-sulfation with a parallel increase in iduronic acid mono-2-O-sulfated disaccharides. To assess the relevance of these data in vivo we established a murine model of fibrosis (unilateral ureteric obstruction (UUO)). HS-specific phage display antibodies (HS3A8 and RB4EA12) showed significant increase in 6-O-sulfation in fibrotic kidney compared with the control. These results suggest an important role of 6-O-sulfation in the pathogenesis of fibrosis associated with chronic rejection.


Assuntos
Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Rim/metabolismo , Rim/patologia , Animais , Doença Crônica , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibrose , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Humanos , Transplante de Rim/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Sulfatases , Sulfatos/química , Sulfotransferases/genética , Sulfotransferases/metabolismo
19.
Immunology ; 143(2): 138-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24912917

RESUMO

Oxidative stress is a major and recurring cause of damage during inflammation, especially following organ transplantation. Initial ischaemia-reperfusion injury causes the production of many reactive oxygen and nitrogen species, and subsequent recruitment and activation of inflammatory cells can lead to further oxidative stress. This stress is well known to cause damage at the cellular level, for example by induction of senescence leading to the production of a characteristic senescence-associated secretory phenotype. Chemokines are an important component of the senescence-associated secretory phenotype, recruiting further leucocytes and reinforcing the stress and senescence responses. As well as inducing the production of proteins, including chemokines, oxidative stress can alter proteins themselves, both directly and by induction of enzymes capable of modification. These alterations can lead to important modifications to their biological activity and also alter detection by some antibodies, potentially limiting the biological relevance of some immunochemical and proteomic biomarkers. Peroxynitrite, a reactive nitrogen species generated during inflammation and ischaemia, can cause such modifications by nitrating chemokines. Matrix metalloproteinases, released by many stressed cells, can cleave chemokines, altering function, while peptidylarginine deiminases can inactivate certain chemokines by citrullination. This review discusses the relationship between inflammation and post-translational modification, focusing on the functional modulation of transplant-relevant pro-inflammatory chemokines.


Assuntos
Quimiocinas/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Transplante de Órgãos/efeitos adversos , Animais , Biomarcadores/metabolismo , Humanos , Inflamação/imunologia , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Resultado do Tratamento
20.
Lancet ; 384(9940): 309-18, 2014 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-24814090

RESUMO

BACKGROUND: Etrolizumab is a humanised monoclonal antibody that selectively binds the ß7 subunit of the heterodimeric integrins α4ß7 and αEß7. We aimed to assess etrolizumab in patients with moderately-to-severely active ulcerative colitis. METHODS: In this double-blind, placebo-controlled, randomised, phase 2 study, patients with moderately-to-severely active ulcerative colitis who had not responded to conventional therapy were recruited from 40 referral centres in 11 countries. Eligible patients (aged 18-75 years; Mayo Clinic Score [MCS] of 5 of higher [or ≥6 in USA]; and disease extending 25 cm or more from anal verge) were randomised (1:1:1) to one of two dose levels of subcutaneous etrolizumab (100 mg at weeks 0, 4, and 8, with placebo at week 2; or 420 mg loading dose [LD] at week 0 followed by 300 mg at weeks 2, 4, and 8), or matching placebo. The primary endpoint was clinical remission at week 10, defined as MCS of 2 or less (with no individual subscore of >1), analysed in the modified intention-to-treat population (mITT; all randomly assigned patients who had received at least one dose of study drug, had at least one post-baseline disease-activity assessment, and had a centrally read screening endoscopic subscore of ≥2). This study is registered with ClinicalTrials.gov, number NCT01336465. FINDINGS: Between Sept 2, 2011, and July 11, 2012, 124 patients were randomly assigned, of whom five had a endoscopic subscore of 0 or 1 and were excluded from the mITT population, leaving 39 patients in the etrolizumab 100 mg group, 39 in the etrolizumab 300 mg plus LD group, and 41 in the placebo group for the primary analyses. No patients in the placebo group had clinical remission at week 10, compared with eight (21% [95% CI 7-36]) patients in the etrolizumab 100 mg group (p=0·0040) and four (10% [0·2-24]) patients in the 300 mg plus LD group (p=0·048). Adverse events occurred in 25 (61%) of 41 patients in the etrolizumab 100 mg group (five [12%] of which were regarded as serious), 19 (48%) of 40 patients in the etrolizumab 300 mg plus LD group (two [5%] serious), and 31 (72%) of 43 patients in the placebo group (five [12%] serious). INTERPRETATION: Etrolizumab was more likely to lead to clinical remission at week 10 than was placebo. Therefore, blockade of both α4ß7 and αEß7 might provide a unique therapeutic approach for the treatment of ulcerative colitis, and phase 3 studies have been planned. FUNDING: Genentech.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Adulto , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Método Duplo-Cego , Feminino , Humanos , Masculino , Indução de Remissão/métodos , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...