Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35027453

RESUMO

Paneth cells are intestinal epithelial cells that release antimicrobial peptides, such as α-defensin as part of host defense. Together with mesenchymal cells, Paneth cells provide niche factors for epithelial stem cell homeostasis. Here, we report two subtypes of murine Paneth cells, differentiated by their production and utilization of fucosyltransferase 2 (Fut2), which regulates α(1,2)fucosylation to create cohabitation niches for commensal bacteria and prevent invasion of the intestine by pathogenic bacteria. The majority of Fut2- Paneth cells were localized in the duodenum, whereas the majority of Fut2+ Paneth cells were in the ileum. Fut2+ Paneth cells showed higher granularity and structural complexity than did Fut2- Paneth cells, suggesting that Fut2+ Paneth cells are involved in host defense. Signaling by the commensal bacteria, together with interleukin 22 (IL-22), induced the development of Fut2+ Paneth cells. IL-22 was found to affect the α-defensin secretion system via modulation of Fut2 expression, and IL-17a was found to increase the production of α-defensin in the intestinal tract. Thus, these intestinal cytokines regulate the development and function of Fut2+ Paneth cells as part of gut defense.

2.
Front Cell Infect Microbiol ; 11: 752304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869061

RESUMO

Over the last several years, many advances have been made in understanding the role of bacteria in the pathogenesis of gastrointestinal cancers. Beginning with Helicobacter pylori being recognized as the first bacterial carcinogen and the causative agent of most gastric cancers, more recent studies have examined the role of enteric microbes in colorectal cancer. In the digestive tract, these communities are numerous and have a complex interrelationship with local immune/inflammatory responses that impact the health of the host. As modifying the microbiome in the stomach has decreased the risk of gastric cancer, modifying the distal microbiome may decrease the risk of colorectal cancers. To date, very few studies have considered the notion that mucosal lymphocyte-dependent immune memory may confound attempts to change the microbial components in these communities. The goal of this review is to consider some of the factors impacting host-microbial interactions that affect colorectal cancer and raise questions about how immune memory responses to the local microbial consortium affect any attempt to modify the composition of the intestinal microbiome.

3.
Front Pharmacol ; 12: 763657, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744743

RESUMO

We previously identified Alcaligenes spp. as a commensal bacterium that resides in lymphoid tissues, including Peyer's patches. We found that Alcaligenes-derived lipopolysaccharide acted as a weak agonist of Toll-like receptor four due to the unique structure of lipid A, which lies in the core of lipopolysaccharide. This feature allowed the use of chemically synthesized Alcaligenes lipid A as a safe synthetic vaccine adjuvant that induces Th17 polarization to enhance systemic IgG and respiratory IgA responses to T-cell-dependent antigens (e.g., ovalbumin and pneumococcal surface protein A) without excessive inflammation. Here, we examined the adjuvant activity of Alcaligenes lipid A on a Haemophilus influenzae B conjugate vaccine that contains capsular polysaccharide polyribosyl ribitol phosphate (PRP), a T-cell-independent antigen, conjugated with the T-cell-dependent tetanus toxoid (TT) antigen (i.e., PRP-TT). When mice were subcutaneously immunized with PRP alone or mixed with TT, Alcaligenes lipid A did not affect PRP-specific IgG production. In contrast, PRP-specific serum IgG responses were enhanced when mice were immunized with PRP-TT, but these responses were impaired in similarly immunized T-cell-deficient nude mice. Furthermore, TT-specific-but not PRP-specific-T-cell activation occurred in mice immunized with PRP-TT together with Alcaligenes lipid A. In addition, coculture with Alcaligenes lipid A promoted significant proliferation of and enhanced antibody production by B cells. Together, these findings suggest that Alcaligenes lipid A exerts an adjuvant activity on thymus-independent Hib polysaccharide antigen in the presence of a T-cell-dependent conjugate carrier antigen.

4.
Int Immunopharmacol ; 101(Pt A): 108280, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34710845

RESUMO

The COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has proven to be devastating to society. Mucosal vaccines that can induce antigen-specific immune responses in both the systemic and mucosal compartments are considered an effective measure to overcome infectious diseases caused by pathogenic microbes. We have recently developed a nasal vaccine system using cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and cholesteryl 3ß-N-(dimethylaminoethyl)carbamate in mice. However, the comprehensive molecular mechanism(s), especially the host soluble mediator involved in this process, by which cationic liposomes promote antigen-specific mucosal immune responses, remain to be elucidated. Herein, we show that intranasal administration of cationic liposomes elicited interleukin-6 (IL-6) expression at the site of administration. Additionally, both nasal passages and splenocytes from mice nasally immunized with cationic liposomes plus ovalbumin (OVA) were polarized to produce IL-6 when re-stimulated with OVA in vitro. Furthermore, pretreatment with anti-IL-6R antibody, which blocks the biological activities of IL-6, attenuated the production of OVA-specific nasal immunoglobulin A (IgA) but not OVA-specific serum immunoglobulin G (IgG) responses. In this study, we demonstrated that IL-6, exerted by nasally administered cationic liposomes, plays a crucial role in antigen-specific IgA induction.

5.
Viruses ; 13(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696531

RESUMO

Hepatitis A virus (HAV) causes transient acute infection, and little is known of viral shedding via the duodenum and into the intestinal environment, including the gut microbiome, from the period of infection until after the recovery of symptoms. Therefore, in this study, we aimed to comprehensively observe the amount of virus excreted into the intestinal tract, the changes in the intestinal microbiome, and the level of inflammation during the healing process. We used blood and stool specimens from patients with human immunodeficiency virus who were infected with HAV during the HAV outbreak in Japan in 2018. Moreover, we observed changes in fecal HAV RNA and quantified the plasma cytokine level and gut microbiome by 16S rRNA analysis from clinical onset to at least 6 months after healing. HAV was detected from clinical onset up to a period of more than 150 days. Immediately after infection, many pro-inflammatory cytokines were elicited, and some cytokines showed different behaviors. The intestinal microbiome changed significantly after infection (dysbiosis), and the dysbiosis continued for a long time after healing. These observations suggest that the immunocompromised state is associated with prolonged viral shedding into the intestinal tract and delayed recovery of the intestinal environment.

6.
Cell Rep ; 36(10): 109655, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496253

RESUMO

The evolutionary strategy of transferring maternal antibodies via milk profoundly impacts the survival, lifelong health, and wellbeing of all neonates, including a pronounced impact on human breastfeeding success and infant development. While there has been increased recognition that interorgan connectivity influences the quality of a mother's milk, potentially to personalize it for her offspring, the underlying bases for these processes are incompletely resolved. Here, we define an essential role of Peyer's patches (PPs) for the generation of plasma cells that secrete maternal immunoglobulin A (IgA) into milk. Our metagenomic analysis reveals that the presence of certain residential microorganisms in the gastrointestinal (GI) tract, such as Bacteroides acidifaciens and Prevotella buccalis, is indispensable for the programming of maternal IgA synthesis prior to lactational transfer. Our data provide important insights into how the microbiome of the maternal GI environment, specifically through PPs, can be communicated to the next generation via milk.

7.
Microbiol Spectr ; 9(1): e0070821, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34378948

RESUMO

Chronic inflammation is a hallmark of human immunodeficiency virus (HIV) infection and a risk factor for the development and progression of age-related comorbidities. Although HIV-associated gut dysbiosis has been suggested to be involved in sustained chronic inflammation, there remains a limited understanding of the association between gut dysbiosis and chronic inflammation during HIV infection. Here, we investigated compositional changes in the gut microbiome and its role in chronic inflammation in patients infected with HIV. We observed that the gut microbiomes of patients with low CD4 counts had reduced alpha diversity compared to those in uninfected controls. Following CD4 recovery, alpha diversity was restored, but intergroup dissimilarity of bacterial composition remained unchanged between patients and uninfected controls. Patients with HIV had higher abundance of the classes Negativicutes, Bacilli, and Coriobacteriia, as well as depletion of the class Clostridia. These relative abundances positively correlated with inflammatory cytokines and negatively correlated with anti-inflammatory cytokines. We found that gut dysbiosis accompanying HIV infection was characterized by a depletion of obligate anaerobic Clostridia and enrichment of facultative anaerobic bacteria, reflecting increased intestinal oxygen levels and intestinal permeability. Furthermore, it is likely that HIV-associated dysbiosis shifts the immunological balance toward inflammatory Th1 responses and encourages proinflammatory cytokine production. Our results suggest that gut dysbiosis contributes to sustaining chronic inflammation in patients with HIV infection despite effective antiretroviral therapy and that correcting gut dysbiosis will be effective in improving long-term outcomes in patients. IMPORTANCE Chronic inflammation is a hallmark of HIV infection and is associated with the development and progression of age-related comorbidities. Although the gastrointestinal tract is a major site of HIV replication and CD4+ T-cell depletion, the role of HIV-associated imbalance of gut microbiome in chronic inflammation is unclear. Here, we aimed to understand the causal relationship between abnormalities in the gut microbiome and chronic inflammation in patients with HIV. Our results suggest HIV-associated gut dysbiosis presents a more aerobic environment than that of healthy individuals, despite prolonged viral suppression. This dysbiosis likely results from a sustained increase in intestinal permeability, which supports sustained bacterial translocation in HIV patients, despite effective therapy. Additionally, we observed that several bacterial taxa enriched in HIV patients were associated with increased expression of inflammatory cytokines. Collectively, these results suggest that gut dysbiosis plays an important role in chronic inflammation in HIV patients.

8.
Int Immunol ; 33(12): 767-774, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34436595

RESUMO

The oral and nasal cavities are covered by the mucosal epithelium that starts at the beginning of the aero-digestive tract. These mucosal surfaces are continuously exposed to environmental antigens including pathogens and allergens and are thus equipped with a mucosal immune system that mediates initial recognition of pathogenicity and initiates pathogen-specific immune responses. At the dawn of our scientific effort to explore the mucosal immune system, dental science was one of the major driving forces as it provided insights into the importance of mucosal immunity and its application for the control of oral infectious diseases. The development of mucosal vaccines for the prevention of dental caries was thus part of a novel approach that contributed to building the scientific foundations of the mucosal immune system. Since then, mucosal immunology and vaccines have gone on a scientific journey to become one of the major entities within the discipline of immunology. Here, we introduce our past and current efforts and future directions for the development of mucosal vaccines, specifically a rice-based oral vaccine (MucoRice) and a nanogel-based nasal vaccine, with the aim of preventing and controlling gastrointestinal and respiratory infectious diseases using the interdisciplinary fusion of mucosal immunology with agricultural science and biomaterial engineering, respectively.

9.
Front Immunol ; 12: 699349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276692

RESUMO

Alcaligenes spp., including A. faecalis, is a gram-negative facultative bacterium uniquely residing inside the Peyer's patches. We previously showed that A. faecalis-derived lipopolysaccharides (Alcaligenes LPS) acts as a weak agonist of toll-like receptor 4 to activate dendritic cells and shows adjuvant activity by enhancing IgG and Th17 responses to systemic vaccination. Here, we examined the efficacy of Alcaligenes LPS as a nasal vaccine adjuvant. Nasal immunization with ovalbumin (OVA) plus Alcaligenes LPS induced follicular T helper cells and germinal center formation in the nasopharynx-associated lymphoid tissue (NALT) and cervical lymph nodes (CLNs), and consequently enhanced OVA-specific IgA and IgG responses in the respiratory tract and serum. In addition, nasal immunization with OVA plus Alcaligenes LPS induced OVA-specific T cells producing IL-17 and/or IL-10, whereas nasal immunization with OVA plus cholera toxin (CT) induced OVA-specific T cells producing IFN-γ and IL-17, which are recognized as pathogenic type of Th17 cells. In addition, CT, but not Alcaligenes LPS, promoted the production of TNF-α and IL-5 by T cells. Nasal immunization with OVA plus CT, but not Alcaligenes LPS, led to increased numbers of neutrophils and eosinophils in the nasal cavity. Together, these findings indicate that the benign nature of Alcaligenes LPS is an effective nasal vaccine adjuvant that induces antigen-specific mucosal and systemic immune responses without activation of inflammatory cascade after nasal administration.

10.
Biosci Biotechnol Biochem ; 85(10): 2137-2144, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34297057

RESUMO

Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.

11.
Mucosal Immunol ; 14(6): 1335-1346, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34326478

RESUMO

Intestinal inflammation can be accompanied by osteoporosis, but their relationship, mediated by immune responses, remains unclear. Here, we investigated a non-IgE-mediated food-allergic enteropathy model of ovalbumin (OVA) 23-3 mice expressing OVA-specific T-cell-receptor transgenes. Mesenteric lymph nodes (MLNs) and their pathogenic CD4+T cells were important to enteropathy occurrence and exacerbation when the mice were fed an egg-white (EW) diet. EW-fed OVA23-3 mice also developed bone loss and increased CD44hiCD62LloCD4+T cells in the MLNs and bone marrow (BM); these changes were attenuated by MLN, but not spleen, resection. We fed an EW diet to F1 cross offspring from OVA23-3 mice and a mouse line expressing the photoconvertible protein KikGR to track MLN CD4+T cells. Photoconverted MLN CD44hiCD62LloCD4+T cells migrated predominantly to the BM; pit formation assay proved their ability to promote bone damage via osteoclasts. Significantly greater expression of IL-4 mRNA in MLN CD44hiCD62LloCD4+T cells and bone was observed in EW-fed OVA23-3 mice. Anti-IL-4 monoclonal antibody injection canceled bone loss in the primary inflammation phase in EW-fed mice, but less so in the chronic phase. This novel report shows the specific inflammatory relationship, via Th2-dominant-OVA-specific T cells and IL-4 production, between MLNs and bone, a distant organ, in food-allergic enteropathy.

12.
Sci Rep ; 11(1): 13945, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230563

RESUMO

Acute gastroenteritis associated with diarrhea is considered a serious disease in Africa and South Asia. In this study, we examined the trends in the causative pathogens of diarrhea and the corresponding gut microbiota in Ghana using microbiome analysis performed on diarrheic stools via 16S rRNA sequencing. In total, 80 patients with diarrhea and 34 healthy adults as controls, from 2017 to 2018, were enrolled in the study. Among the patients with diarrhea, 39 were norovirus-positive and 18 were rotavirus-positive. The analysis of species richness (Chao1) was lower in patients with diarrhea than that in controls. Beta-diversity analysis revealed significant differences between the two groups. Several diarrhea-related pathogens (e.g., Escherichia-Shigella, Klebsiella and Campylobacter) were detected in patients with diarrhea. Furthermore, co-infection with these pathogens and enteroviruses (e.g., norovirus and rotavirus) was observed in several cases. Levels of both Erysipelotrichaceae and Staphylococcaceae family markedly differed between norovirus-positive and -negative diarrheic stools, and the 10 predicted metabolic pathways, including the carbohydrate metabolism pathway, showed significant differences between rotavirus-positive patients with diarrhea and controls. This comparative study of diarrheal pathogens in Ghana revealed specific trends in the gut microbiota signature associated with diarrhea and that pathogen-dependent dysbiosis occurred in viral gastroenteritis.


Assuntos
Disbiose/microbiologia , Disbiose/virologia , Gastroenterite/microbiologia , Gastroenterite/virologia , Microbioma Gastrointestinal , Adolescente , Adulto , Bactérias/classificação , Biodiversidade , Estudos de Casos e Controles , Criança , Pré-Escolar , Diarreia/microbiologia , Diarreia/virologia , Fezes/microbiologia , Feminino , Gana , Humanos , Masculino , Filogenia , Rotavirus/fisiologia
13.
Front Cell Infect Microbiol ; 11: 646467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084754

RESUMO

HIV-1 infected individuals under antiretroviral therapy can control viremia but often develop non-AIDS diseases such as cardiovascular and metabolic disorders. Gut microbiome dysbiosis has been indicated to be associated with progression of these diseases. Analyses of gut/fecal microbiome in individual regions are important for our understanding of pathogenesis in HIV-1 infections. However, data on gut/fecal microbiome has not yet been accumulated in West Africa. In the present study, we examined fecal microbiome compositions in HIV-1 infected adults in Ghana, where approximately two-thirds of infected adults are females. In a cross-sectional case-control study, age- and gender-matched HIV-1 infected adults (HIV+; n = 55) and seronegative controls (HIV-; n = 55) were enrolled. Alpha diversity of fecal microbiome in HIV+ was significantly reduced compared to HIV- and associated with CD4 counts. HIV+ showed reduction in varieties of bacteria including Faecalibacterium, the most abundant in seronegative controls, but enrichment of Proteobacteria. Ghanaian HIV+ exhibited enrichment of Dorea and Blautia; bacteria groups whose depletion has been reported in HIV-1 infected individuals in several other cohorts. Furthermore, HIV+ in our cohort exhibited a depletion of Prevotella, a genus whose enrichment has recently been shown in men having sex with men (MSM) regardless of HIV-1 status. The present study revealed the characteristics of dysbiotic fecal microbiome in HIV-1 infected adults in Ghana, a representative of West African populations.


Assuntos
Infecções por HIV , HIV-1 , Microbiota , Adulto , Estudos de Casos e Controles , Estudos Transversais , Disbiose , Feminino , Gana , Humanos , Masculino
14.
Vaccine ; 39(25): 3353-3364, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34016473

RESUMO

Current polysaccharide-based pneumococcal vaccines are effective but not compatible with all serotypes of Streptococcus pneumoniae. We previously developed an adjuvant-free cationic nanogel nasal vaccine containing pneumococcal surface protein A (PspA), which is expressed on the surfaces of all pneumococcal serotypes. Here, to address the sequence diversity of PspA proteins, we formulated a cationic nanogel-based trivalent pneumococcal nasal vaccine and demonstrated the vaccine's immunogenicity and protective efficacy in macaques by using a newly developed nasal spray device applicable to humans. Nasal vaccination of macaques with cationic cholesteryl pullulan nanogel (cCHP)-trivalent PspA vaccine effectively induced PspA-specific IgGs that bound to pneumococcal surfaces and triggered complement C3 deposition. The immunized macaques were protected from pneumococcal intratracheal challenge through both inhibition of lung inflammation and a dramatic reduction in the numbers of bacteria in the lungs. These results demonstrated that the cCHP-trivalent PspA vaccine is an effective candidate vaccine against pneumococcal infections.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Anticorpos Antibacterianos , Proteínas de Bactérias , Humanos , Macaca , Camundongos , Camundongos Endogâmicos BALB C , Nanogéis , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas
15.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805523

RESUMO

The intestinal epithelium serves as a dynamic barrier to protect the host tissue from exposure to a myriad of inflammatory stimuli in the luminal environment. Intestinal epithelial cells (IECs) encompass differentiated and specialized cell types that are equipped with regulatory genes, which allow for sensing of the luminal environment. Potential inflammatory cues can instruct IECs to undergo a diverse set of phenotypic alterations. Aging is a primary risk factor for a variety of diseases; it is now well-documented that aging itself reduces the barrier function and turnover of the intestinal epithelium, resulting in pathogen translocation and immune priming with increased systemic inflammation. In this study, we aimed to provide an effective epigenetic and regulatory outlook that examines age-associated alterations in the intestines through the profiling of microRNAs (miRNAs) on isolated mouse IECs. Our microarray analysis revealed that with aging, there is dysregulation of distinct clusters of miRNAs that was present to a greater degree in small IECs (22 miRNAs) compared to large IECs (three miRNAs). Further, miRNA-mRNA interaction network and pathway analyses indicated that aging differentially regulates key pathways between small IECs (e.g., toll-like receptor-related cascades) and large IECs (e.g., cell cycle, Notch signaling and small ubiquitin-related modifier pathway). Taken together, current findings suggest novel gene regulation pathways by epithelial miRNAs in aging within the gastrointestinal tissues.


Assuntos
Envelhecimento/fisiologia , Células Epiteliais/fisiologia , Mucosa Intestinal/citologia , MicroRNAs/fisiologia , Animais , Simulação por Computador , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Intestino Grosso/citologia , Intestino Delgado/citologia , Camundongos Endogâmicos C57BL , RNA Mensageiro
16.
Front Plant Sci ; 12: 639953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868338

RESUMO

Human norovirus is the leading cause of acute nonbacterial gastroenteritis in people of all ages worldwide. Currently, no licensed norovirus vaccine, pharmaceutical drug, or therapy is available for the control of norovirus infection. Here, we used a rice transgenic system, MucoRice, to produce a variable domain of a llama heavy-chain antibody fragment (VHH) specific for human norovirus (MucoRice-VHH). VHH is a small heat- and acid-stable protein that resembles a monoclonal antibody. Consequently, VHHs have become attractive and useful antibodies (Abs) for oral immunotherapy against intestinal infectious diseases. MucoRice-VHH constructs were generated at high yields in rice seeds by using an overexpression system with RNA interference to suppress the production of the major rice endogenous storage proteins. The average production levels of monomeric VHH (7C6) to GII.4 norovirus and heterodimeric VHH (7C6-1E4) to GII.4 and GII.17 noroviruses in rice seed were 0.54 and 0.28% (w/w), respectively, as phosphate buffered saline (PBS)-soluble VHHs. By using a human norovirus propagation system in human induced pluripotent stem-cell-derived intestinal epithelial cells (IECs), we demonstrated the high neutralizing activity of MucoRice expressing monomeric VHH (7C6) against GII.4 norovirus and of heterodimeric VHH (7C6-1E4) against both GII.4 and GII.17 noroviruses. In addition, MucoRice-VHH (7C6-1E4) retained neutralizing activity even after heat treatment at 90°C for 20 min. These results build a fundamental platform for the continued development of MucoRice-VHH heterodimer as a candidate for oral immunotherapy and for prophylaxis against GII.4 and GII.17 noroviruses in not only healthy adults and children but also immunocompromised patients and the elderly.

17.
Angew Chem Int Ed Engl ; 60(18): 10023-10031, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33522128

RESUMO

Alcaligenes faecalis is the predominant Gram-negative bacterium inhabiting gut-associated lymphoid tissues, Peyer's patches. We previously reported that an A. faecalis lipopolysaccharide (LPS) acted as a weak agonist for Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD-2) receptor as well as a potent inducer of IgA without excessive inflammation, thus suggesting that A. faecalis LPS might be used as a safe adjuvant. In this study, we characterized the structure of both the lipooligosaccharide (LOS) and LPS from A. faecalis. We synthesized three lipid A molecules with different degrees of acylation by an efficient route involving the simultaneous introduction of 1- and 4'-phosphates. Hexaacylated A. faecalis lipid A showed moderate agonistic activity towards TLR4-mediated signaling and the ability to elicit a discrete interleukin-6 release in human cell lines and mice. It was thus found to be the active principle of the LOS/LPS and a promising vaccine adjuvant candidate.


Assuntos
Alcaligenes faecalis/química , Lipídeo A/química , Lipopolissacarídeos/química , Animais , Configuração de Carboidratos , Linhagem Celular , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Lipídeo A/farmacologia , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/farmacologia , Camundongos , Receptor 4 Toll-Like/agonistas
18.
Gastroenterology ; 160(6): 2089-2102.e12, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33577875

RESUMO

BACKGROUND & AIMS: Fecal microbiota transplantation (FMT) is an effective therapy for recurrent Clostridioides difficile infection (rCDI). However, the overall mechanisms underlying FMT success await comprehensive elucidation, and the safety of FMT has recently become a serious concern because of the occurrence of drug-resistant bacteremia transmitted by FMT. We investigated whether functional restoration of the bacteriomes and viromes by FMT could be an indicator of successful FMT. METHODS: The human intestinal bacteriomes and viromes from 9 patients with rCDI who had undergone successful FMT and their donors were analyzed. Prophage-based and CRISPR spacer-based host bacteria-phage associations in samples from recipients before and after FMT and in donor samples were examined. The gene functions of intestinal microorganisms affected by FMT were evaluated. RESULTS: Metagenomic sequencing of both the viromes and bacteriomes revealed that FMT does change the characteristics of intestinal bacteriomes and viromes in recipients after FMT compared with those before FMT. In particular, many Proteobacteria, the fecal abundance of which was high before FMT, were eliminated, and the proportion of Microviridae increased in recipients. Most temperate phages also behaved in parallel with the host bacteria that were altered by FMT. Furthermore, the identification of bacterial and viral gene functions before and after FMT revealed that some distinctive pathways, including fluorobenzoate degradation and secondary bile acid biosynthesis, were significantly represented. CONCLUSIONS: The coordinated action of phages and their host bacteria restored the recipients' intestinal flora. These findings show that the restoration of intestinal microflora functions reflects the success of FMT.


Assuntos
Enterocolite Pseudomembranosa/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Viroma , Adulto , Idoso , Bacteriófagos , Clostridioides difficile , Enterocolite Pseudomembranosa/microbiologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/virologia , Humanos , Masculino , Metagenômica , Microviridae , Pessoa de Meia-Idade , Proteobactérias , Viroma/genética
19.
Mol Pharm ; 18(4): 1582-1592, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621107

RESUMO

We previously developed a safe and effective nasal vaccine delivery system using a self-assembled nanosized hydrogel (nanogel) made from a cationic cholesteryl pullulan. Here, we generated three pneumococcal surface protein A (PspA) fusion antigens as a universal pneumococcal nasal vaccine and then encapsulated each PspA into a nanogel and mixed the three resulting monovalent formulations into a trivalent nanogel-PspA formulation. First, to characterize the nanogel-PspA formulations, we used native polyacrylamide gel electrophoresis (PAGE) to determine the average number of PspA molecules encapsulated per nanogel molecule. Second, we adopted two methods-a densitometric method based on lithium dodecyl sulfate (LDS)-PAGE and a biologic method involving sandwich enzyme-linked immunosorbent assay (ELISA)-to determine the PspA content in the nanogel formulations. Third, treatment of nanogel-PspA formulations by adding methyl-ß-cyclodextrin released each PspA in its native form, as confirmed through circular dichroism (CD) spectroscopy. However, when nanogel-PspA formulations were heat-treated at 80 °C for 16 h, CD spectroscopy showed that each PspA was released in a denatured form. Fourth, we confirmed that the nanogel-PspA formulations were internalized into nasal mucosa effectively and that each PspA was gradually released from the nanogel in epithelial cells in mice. Fifth, LDS-PAGE densitometry and ELISA both indicated that the amount of trivalent PspA was dramatically decreased in the heat-treated nanogel compared with that before heating. When mice were immunized nasally using the heat-treated formulation, the immunologic activity of each PspA was dramatically reduced compared with that of the untreated formulation; in both cases, the immunologic activity correlated well with the content of each PspA as determined by LDS-PAGE densitometry and ELISA. Finally, we confirmed that the trivalent nanogel-PspA formulation induced equivalent titers of PspA-specific serum IgG and mucosal IgA Abs in immunized mice. These results show that the specification methods we developed effectively characterized our nanogel-based trivalent PspA nasal vaccine formulation.


Assuntos
Proteínas de Bactérias/administração & dosagem , Higroscópicos/química , Nanogéis/química , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Administração Intranasal , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/farmacocinética , Liberação Controlada de Fármacos , Feminino , Glucanos/química , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Animais , Mucosa Nasal/metabolismo , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/genética , Vacinas Pneumocócicas/imunologia , Vacinas Pneumocócicas/farmacocinética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , beta-Ciclodextrinas/química
20.
PLoS One ; 16(2): e0246422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556119

RESUMO

Despite significant modern medicine progress, having an infectious disease is a major risk factor for humans. Mucosal vaccination is now widely considered as the most promising strategy to defeat infectious diseases; however, only live-attenuated and inactivated mucosal vaccines are used in the clinical field. To date, no subunit mucosal vaccine was approved mainly because of the lack of safe and effective methodologies to either activate or initiate host mucosal immune responses. We have recently elucidated that intranasal administration of enzymatically polymerised caffeic acid potentiates antigen-specific mucosal and systemic antibody responses in mice. However, our earlier study has not confirmed whether these effects are specific to the polymer synthesised from caffeic acid. Here, we show that enzymatically polymerised polyphenols (EPPs) from various phenolic compounds possess mucosal adjuvant activities when administered nasally with an antigen to mice. Potentiation of antigen-specific immune responses by all EPPs tested in this study showed no clear difference among the precursors used. We found that intranasal administration of ovalbumin as the antigen, in combination with all enzymatically polymerised polyphenols used in this study, induced ovalbumin-specific mucosal IgA in the nasal cavity, bronchoalveolar lavage fluid, vaginal fluids, and systemic IgG, especially IgG1, in sera. Our results demonstrate that the mucosal adjuvant activities of polyphenols are not limited to polymerised caffeic acid but are broadly observable across the studied polyphenols. These properties of polyphenols may be advantageous for the development of safe and effective nasal vaccine systems to prevent and/or treat various infectious diseases.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Infecções/imunologia , Polifenóis/imunologia , Animais , Formação de Anticorpos , Ácidos Cafeicos/imunologia , Feminino , Imunoglobulina A/imunologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...