Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Mol Neurobiol ; 54(9): 6903-6916, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27771902


Human neuroblastoma SH-SY5Y cells have been used as an in vitro model for neurodegenerative disorders such as Parkinson's disease and can be induced to a mature neuronal phenotype through retinoic acid (RA) differentiation. However, mechanisms of RA-induced differentiation remain unclear. Here, we investigate the role of reactive species (RS) on SH-SY5Y neuroblastoma cells under RA differentiation, using the antioxidant Trolox® as co-treatment. We found that RA treatment for 7 days reduced the cell number and proliferative capacity and induced the expression of adult catecholaminergic/neuronal markers such as tyrosine hydroxylase (TH), ß-III tubulin, and enolase-2. Evaluation of intracellular RS production by DCFH oxidation assay and quantification of cell non-enzymatic antioxidant activity by TRAP demonstrated that RA increases RS production. Furthermore, mitochondrial NADH oxidation showed to be inhibited under differentiation with RA. Cells subjected to co-treatment with antioxidant Trolox® demonstrated a remaining proliferative capacity and a decrease in the pro-oxidant state and RS production. Besides, antioxidant treatment restores the mitochondrial NADH oxidation. Importantly, Trolox® co-treatment inhibited the appearance of morphological characteristics such as neurite extension and branching, and decreased the expression of TH, ß-III tubulin, and enolase-2 after a seven-day differentiation with RA, indicating that RS production is a necessary step in this process. Trolox® also inhibited the phosphorylation of Akt and ERK1/2, which are involved in differentiation and survival, respectively, of these cells. Altogether, these data indicate the presence of a redox-dependent mechanism in SH-SY5Y RA-differentiation process and can be a useful insight to improve understanding of neuronal differentiation signaling.

Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Neurônios/citologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tretinoína/farmacologia , Regulação para Cima/efeitos dos fármacos , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
Cancer Lett ; 390: 176-187, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007636


The tumor microenvironment is being increasingly recognized as a key factor in cancer aggressiveness. In this study, we characterized the inflammatory gene signatures altered in glioma cell lines and tumor specimens of differing histological and molecular subtypes. The results showed that glioblastoma multiforme (GBM) shows upregulation of a subset of inflammatory genes when compared to astrocytomas and oligodendrogliomas. With molecular subtypes of GBM, the expression of inflammatory genes is heterogeneous, being enriched in mesenchymal and downregulated in Proneural/GCIMP. Other inflammation-associated processes such as tumor-associated macrophage (TAM) signatures are upregulated in mesenchymal, and a subset of 33 mesenchymal-enriched inflammatory and TAM markers showed correlation with poor survival. We found that various GBM tumor-upregulated genes such as IL6, IL8 and CCL2 are also actively expressed in glioma cell lines, playing differential and cooperative roles in promoting proliferation, invasion, angiogenesis and macrophage polarization in vitro. These genes can be stimulated by pathways typically altered in GBM, including the EGFR, PDGFR, MEK1/2-ERK1/2, PI3K/Akt and NFκB cascades. Taken together, the results presented herein depict some inflammatory pathways altered in gliomas and highlight potentially relevant targets to therapy improvement.

Neoplasias Encefálicas/fisiopatologia , Glioblastoma/fisiopatologia , NF-kappa B/metabolismo , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Glioblastoma/imunologia , Humanos , Mesoderma/fisiopatologia , NF-kappa B/genética , NF-kappa B/imunologia , Reação em Cadeia da Polimerase , Transdução de Sinais/efeitos dos fármacos
Mol Neurobiol ; 53(9): 6124-6135, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26541884


Retinoic acid (RA) morphogenetic properties have been used in different kinds of therapies, from neurodegenerative disorders to some types of cancer such as promyelocytic leukemia and neuroblastoma. However, most of the pathways responsible for RA effects remain unknown. To investigate such pathways, we used a RA-induced differentiation model in the human neuroblastoma cells, SH-SY5Y. Our data showed that n-acetyl-cysteine (NAC) reduced cells' proliferation rate and increased cells' sensitivity to RA toxicity. Simultaneously, NAC pre-incubation attenuated nuclear factor erythroid 2-like factor 2 (NRF2) activation by RA. None of these effects were obtained with Trolox® as antioxidant, suggesting a cysteine signalization by RA. NRF2 knockdown increased cell sensibility to RA after 96 h of treatment and diminished neuroblastoma proliferation rate. Conversely, NRF2 overexpression limited RA anti-proliferative effects and increased cell proliferation. In addition, a rapid and non-genomic activation of the ERK 1/2 and PI3K/AKT pathways revealed to be equally required to promote NRF2 activation and necessary for RA-induced differentiation. Together, we provide data correlating NRF2 activity with neuroblastoma proliferation and resistance to RA treatments; thus, this pathway could be a potential target to optimize neuroblastoma chemotherapeutic response as well as in vitro neuronal differentiation protocols.

Diferenciação Celular/efeitos dos fármacos , Modelos Biológicos , Fator 2 Relacionado a NF-E2/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Tretinoína/farmacologia , Acetilcisteína/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
Cancer Lett ; 358(2): 220-231, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25542083


Glioblastoma is a devastating primary brain tumor resistant to conventional therapies. In this study, we tested the efficacy of combining temozolomide with curcumin, a phytochemical known to inhibit glioblastoma growth, and investigated the mechanisms involved. The data showed that synergy between curcumin and temozolomide was not achieved due to redundant mechanisms that lead to activating protective autophagy both in vitro and in vivo. Autophagy preceded apoptosis, and blocking this response with autophagy inhibitors (3-methyl-adenine, ATG7 siRNA and chloroquine) rendered cells susceptible to temozolomide and curcumin alone or combinations by increasing apoptosis. While curcumin inhibited STAT3, NFκB and PI3K/Akt to affect survival, temozolomide-induced autophagy relied on the DNA damage response and repair components ATM and MSH6, as well as p38 and JNK1/2. However, the most interesting observation was that both temozolomide and curcumin required ERK1/2 to induce autophagy. Blocking this ERK1/2-mediated temozolomide and curcumin induced autophagy with resveratrol, a blood-brain barrier permeable drug, improved temozolomide/curcumin efficacy in brain-implanted tumors. Overall, the data presented demonstrate that autophagy impairs the efficacy of temozolomide/curcumin, and inhibiting this phenomenon could provide novel opportunities to improve brain tumor treatment.

Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Curcumina/farmacologia , Dacarbazina/análogos & derivados , Glioblastoma/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Glioblastoma/tratamento farmacológico , Humanos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ratos , Temozolomida
J Clin Biochem Nutr ; 55(2): 110-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25320458


Antioxidant, anti-glycation and anti-inflammatory activities of fresh and conserved peach fruits (Prunus persica L. Batsch) were compared. Fresh peach pulps, peels, preserve peach pulps and the preserve syrup were prepared at equal concentrations. Rat liver, kidney and brain cortex tissue slices were pre-incubated with peach samples, subjected to oxidative stress with FeSO4 and hydrogen peroxide. Fresh peach pulps and peel conferred higher protection against cytotoxicity and oxidative stress than preserve peach pulps in most tissues. Release of tumor necrosis factor-α and interleukin-1ß was also significantly decreased by Fresh peach pulps and peel, followed by preserve peach pulps. Total phenolic determination and HPLC analysis of carotenoids showed that the content of secondary metabolites in Fresh peach pulps and peel is significantly higher than in preserve peach pulps, while the syrup had only small or trace amounts of these compounds. Fresh peach pulps and Peel demonstrated high antioxidant and anti-inflammatory effects preventing against induced damage.