Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31927981

RESUMO

Colloidal quantum dots (QDs) of I-III-VI ternary compounds such as copper indium sulfide (CIS) and copper indium selenide (CISe) have been under intense investigation due to both their unusual photophysical properties and considerable technological utility. These materials feature a toxic-element-free composition, a tunable bandgap that covers near-infrared and visible spectral energies, and a highly efficient photoluminescence (PL) whose spectrum is located in the reabsorption-free intragap region. These properties make them attractive for light-emission and light-harvesting applications including photovoltaics and luminescent solar concentrators. Despite a large body of literature on device-related studies of CISe(S) QDs, the understanding of their fundamental photophysical properties is surprisingly poor. Two particular subjects that are still heavily debated in the literature include the mechanism(s) for strong intragap emission and the reason(s) for a poorly defined (featureless) absorption edge, which often "tails" below the nominal bandgap. Here, we address these questions by conducting comprehensive spectroscopic studies of CIS QD samples with varied Cu-to-In ratios using resonant PL and PL excitation, femtosecond transient absorption, and magnetic circular dichroism measurements. These studies reveal a strong effect of stoichiometry on the concentration of Cu1+ vs Cu2+ defects (occurring as CuIn″ and CuCu• species, respectively), and their effects on QD optical properties. In particular, we demonstrate that the increase in the relative amount of Cu2+ vs Cu1+ centers suppresses intragap absorption associated with Cu1+ states and sharpens band-edge absorption. In addition, we show that both Cu1+ and Cu2+ centers are emissive but are characterized by distinct activation mechanisms and slightly different emission energies due to different crystal lattice environments. An important overall conclusion of this study is that the relative importance of the Cu2+ vs Cu1+ emission/absorption channels can be controlled by tuning the Cu-to-In ratio, suggesting that the control of sample stoichiometry represents a powerful tool for achieving functionalities (e.g., strong intragap emission) that are not accessible with ideal, defect-free materials.

2.
Nat Commun ; 11(1): 271, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937771

RESUMO

Realization of electrically pumped lasing with solution processable materials will have a revolutionary impact on many disciplines including photonics, chemical sensing, and medical diagnostics. Due to readily tunable, size-controlled emission wavelengths, colloidal semiconductor quantum dots (QDs) are attractive materials for attaining this goal. Here we use specially engineered QDs to demonstrate devices that operate as both a light emitting diode (LED) and an optically pumped laser. These structures feature a distributed feedback resonator integrated into a bottom LED electrode. By carefully engineering a refractive-index profile across the device, we are able to obtain good confinement of a waveguided mode within the QD medium, which allows for demonstrating low-threshold lasing even with an ultrathin (about three QD monolayers) active layer. These devices also exhibit strong electroluminescence (EL) under electrical pumping. The conducted studies suggest that the demonstrated dual-function (lasing/EL) structures represent a promising device platform for realizing colloidal QD laser diodes.

3.
Nat Nanotechnol ; 14(11): 1035-1041, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591527

RESUMO

The ability to effectively manipulate non-equilibrium 'hot' carriers could enable novel schemes for highly efficient energy harvesting and interconversion. In the case of semiconductor materials, realization of such hot-carrier schemes is complicated by extremely fast intraband cooling (picosecond to subpicosecond time scales) due to processes such as phonon emission. Here we show that using magnetically doped colloidal semiconductor quantum dots we can achieve extremely fast rates of spin-exchange processes that allow for 'uphill' energy transfer with an energy-gain rate that greatly exceeds the intraband cooling rate. This represents a dramatic departure from the usual situation where energy-dissipation via phonon emission outpaces energy gains due to standard Auger-type energy transfer at least by a factor of three. A highly favourable energy gain/loss rate ratio realized in magnetically doped quantum dots can enable effective schemes for capturing kinetic energy of hot, unrelaxed carriers via processes such as spin-exchange-mediated carrier multiplication and upconversion, hot-carrier extraction and electron photoemission.

4.
Nano Lett ; 19(12): 8846-8854, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31651177

RESUMO

Colloidal CdSe nanocrystals (NCs) overcoated with an ultrathick CdS shell, also known as dot-in-bulk (DiB) structures, can support two types of excitons, one of which is core-localized and the other, shell-localized. In the case of weak "sub-single-exciton" pumping, emission alternates between the core- and shell-related channels, which leads to two-color light. This property makes these structures uniquely suited for a variety of photonic applications as well as ideal model systems for realizing complex excitonic quasi-particles that do not occur in conventional core/shell NCs. Here, we show that the DiB design can enable an unusual regime in which the same long-lived resident electron can endow trionlike characteristics to either of the two excitons of the DiB NC (core- or shell-based). These two spectrally distinct trion states are apparent in the measured photoluminescence (PL) and spin dynamics of core and shell excitons conducted over a wide range of temperatures and applied magnetic fields. Low-temperature PL measurements indicate that core- and shell-based trions are characterized by a nearly ideal (∼100%) emission quantum yield, suggesting the strong suppression of Auger recombination for both types of excitations. Polarization-resolved PL experiments in magnetic fields of up to 60 T reveal that the core- and the shell-localized trions exhibit remarkably similar spin dynamics, which in both cases are controlled by spin-flip processes involving a heavy hole.

5.
Science ; 365(6454): 672-675, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31416959

RESUMO

Colloidal semiconductor quantum dots (QDs) are attractive materials for realizing highly flexible, solution-processable optical gain media, but they are difficult to use in lasing because of complications associated with extremely short optical-gain lifetimes limited by nonradiative Auger recombination. By combining compositional grading of the QD's interior for hindering Auger decay with postsynthetic charging for suppressing parasitic ground-state absorption, we can reduce the lasing threshold to values below the single-exciton-per-dot limit. As a favorable departure from traditional multi-exciton-based lasing schemes, our approach should facilitate the development of solution-processable lasing devices and thereby help to extend the reach of lasing technologies into areas not accessible with traditional, epitaxially grown semiconductor materials.

6.
Nat Mater ; 18(3): 249-255, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30617342

RESUMO

The application of colloidal semiconductor quantum dots as single-dot light sources still requires several challenges to be overcome. Recently, there has been considerable progress in suppressing intensity fluctuations (blinking) by encapsulating an emitting core in a thick protective shell. However, these nanostructures still show considerable fluctuations in both emission energy and linewidth. Here we demonstrate type-I core/shell heterostructures that overcome these deficiencies. They are made by combining wurtzite semiconductors with a large, directionally anisotropic lattice mismatch, which results in strong asymmetric compression of the emitting core. This modifies the structure of band-edge excitonic states and leads to accelerated radiative decay, reduced exciton-phonon interactions, and suppressed coupling to the fluctuating electrostatic environment. As a result, individual asymmetrically strained dots exhibit highly stable emission energy (<1 meV standard deviation) and a subthermal room-temperature linewidth (~20 meV), concurrent with nearly nonblinking behaviour, high emission quantum yields, and a widely tunable emission colour.

7.
ACS Nano ; 12(12): 12587-12596, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30495927

RESUMO

Colloidal quantum dots (QDs) have attracted considerable attention as promising materials for solution-processable electronic and optoelectronic devices. Copper indium selenium sulfide (CuInSe xS2- x or CISeS) QDs are particularly attractive as an environmentally benign alternative to the much more extensively studied QDs containing toxic metals such as Cd and Pb. Carrier transport properties of CISeS-QD films, however, are still poorly understood. Here, we aim to elucidate the factors that control charge conductance in CISeS QD solids and, based on this knowledge, develop practical approaches for controlling the polarity of charge transport and carrier mobilities. To this end, we incorporate CISeS QDs into field-effect transistors (FETs) and perform detailed characterization of these devices as a function of the Se/(Se+S) ratio, surface treatment, thermal annealing, and the identity of source and drain electrodes. We observe that as-synthesized CuInSe xS2- x QDs exhibit degenerate p-type transport, likely due to metal vacancies and CuIn'' anti-site defects (Cu1+ on an In3+ site) that act as acceptor states. Moderate-temperature annealing of the films in the presence of indium source and drain electrodes leads to switching of the transport polarity to nondegenerate n-type, which can be attributed to the formation of In-related defects such as InCu•• (an In3+ cation on a Cu1+ site) or Ini••• (interstitial In3+) acting as donors. We observe that the carrier mobilities increase dramatically (by 3 orders of magnitude) with increasing Se/(Se+S) ratio in both n- and p-type devices. To explain this observation, we propose a two-state conductance model, which invokes a high-mobility intrinsic band-edge state and a low-mobility defect-related intragap state. These states are thermally coupled, and their relative occupancies depend on both QD composition and temperature. Our observations suggest that the increase in the relative fraction of Se moves conduction- and valence band edges closer to low-mobility intragap levels. This results in increased relative occupancy of the intrinsic band-edge states and a corresponding growth of the measured mobility. Further improvement in charge-transport characteristics of the CISeS QD samples as well as their stability is obtained by infilling the QD films with amorphous Al2O3 using atomic layer deposition.

8.
ACS Nano ; 12(10): 10084-10094, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30216045

RESUMO

Generating multiple excitons by a single high-energy photon is a promising third-generation solar energy conversion strategy. We demonstrate that multiple exciton generation (MEG) in PbS|CdS Janus-like heteronanostructures is enhanced over that of single-component and core/shell nanocrystal architectures, with an onset close to two times the PbS band gap. We attribute the enhanced MEG to the asymmetric nature of the heteronanostructure that results in an increase in the effective Coulomb interaction that drives MEG and a reduction of the competing hot exciton cooling rate. Slowed cooling occurs through effective trapping of hot-holes by a manifold of valence band interfacial states having both PbS and CdS character, as evidenced by photoluminescence studies and ab initio calculations. Using transient photocurrent spectroscopy, we find that the MEG characteristics of the individual nanostructures are maintained in conductive arrays and demonstrate that these quasi-spherical PbS|CdS nanocrystals can be incorporated as the main absorber layer in functional solid-state solar cell architectures. Finally, based upon our analysis, we provide design rules for the next generation of engineered nanocrystals to further improve the MEG characteristics.

9.
Nano Lett ; 18(10): 6645-6653, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30198267

RESUMO

Colloidal semiconductor quantum dots (QDs) are a highly promising materials platform for implementing solution-processable light-emitting diodes (LEDs). They combine high photostability of traditional inorganic semiconductors with chemical flexibility of molecular systems, which makes them well-suited for large-area applications such as television screens, solid-state lighting, and outdoor signage. Additional beneficial features include size-controlled emission wavelengths, narrow bandwidths, and nearly perfect emission efficiencies. State-of-the-art QD-LEDs exhibit high internal quantum efficiencies approaching unity. However, these peak values are observed only at low current densities ( J) and correspondingly low brightnesses, whereas at higher J, the efficiency usually exhibits a quick roll-off. This efficiency droop limits achievable brightness levels and decreases device longevity due to excessive heat generation. Here, we demonstrate QD-LEDs operating with high internal efficiencies (up to 70%) virtually droop-free up to unprecedented brightness of >100,000 cd m-2 (at ∼500 mA cm-2). This exceptional performance is derived from specially engineered QDs that feature a compositionally graded interlayer and a final barrier layer. This QD design allows for improved balance between electron and hole injections combined with considerably suppressed Auger recombination, which helps mitigate efficiency losses due to charge imbalance at high currents. These results indicate a significant potential of newly developed QDs as enablers of future ultrabright, highly efficient devices for both indoor and outdoor applications.

10.
Nano Lett ; 18(1): 395-404, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29226688

RESUMO

Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for photovoltaic devices. An important LSC characteristic is a concentration factor (C), which is defined as the ratio of the output and the input photon flux densities. This parameter can be also thought of as an effective enlargement factor of a solar cell active area. On the basis of thermodynamic considerations, the C-factor can reach extremely high values that exceed those accessible with traditional concentrating optics. In reality, however, the best reported values of C are around 30. Here we demonstrate that using a new type of high-emissivity quantum dots (QDs) incorporated into a specially designed cavity, we are able to achieve the C of ∼62 for spectrally integrated emission and ∼120 for the red portion of the photoluminescence spectrum. The key feature of these QDs is a seed/quantum-well/thick-shell design, which allows for obtaining a high emission quantum yield (>95%) simultaneously with a large LSC quality factor (QLSC of ∼100) defined as the ratio of absorption coefficients at the wavelengths of incident and reemitted light. By incorporating the QDs into a specially designed cavity equipped with a top selective reflector (a Bragg mirror or a thin silver film), we are able to effectively recycle reemitted light achieving light trapping coefficients of ∼85%. The observed performance of these devices is in remarkable agreement with analytical modeling, which allows us to project that the applied approach should allow one to boost the spectrally integrated concentration factors to more than 100 by further improving light trapping and/or increasing QLSC.

11.
Nat Mater ; 17(1): 42-49, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180770

RESUMO

Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge-realization of lasing with electrical injection-remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ∼18 A cm-2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm-2 we achieve the population inversion of the band-edge states.

12.
Nat Nanotechnol ; 12(12): 1140-1147, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29035399

RESUMO

Colloidal semiconductor quantum dots are attractive materials for the realization of solution-processable lasers. However, their applications as optical-gain media are complicated by a non-unity degeneracy of band-edge states, because of which multiexcitons are required to achieve the lasing regime. This increases the lasing thresholds and leads to very short optical gain lifetimes limited by nonradiative Auger recombination. Here, we show that these problems can be at least partially resolved by employing not neutral but negatively charged quantum dots. By applying photodoping to specially engineered quantum dots with impeded Auger decay, we demonstrate a considerable reduction of the optical gain threshold due to suppression of ground-state absorption by pre-existing carriers. Moreover, by injecting approximately one electron per dot on average, we achieve a more than twofold reduction in the amplified spontaneous emission threshold, bringing it to the sub-single-exciton level. These measurements indicate the feasibility of 'zero-threshold' gain achievable by completely blocking the band-edge state with two electrons.

13.
Nano Lett ; 17(9): 5607-5613, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28776995

RESUMO

Auger recombination is a nonradiative three-particle process wherein the electron-hole recombination energy dissipates as a kinetic energy of a third carrier. Auger decay is enhanced in quantum-dot (QD) forms of semiconductor materials compared to their bulk counterparts. Because this process is detrimental to many prospective applications of the QDs, the development of effective approaches for suppressing Auger recombination has been an important goal in the QD field. One such approach involves "smoothing" of the confinement potential, which suppresses the intraband transition involved in the dissipation of the electron-hole recombination energy. The present study evaluates the effect of increasing "smoothness" of the confinement potential on Auger decay employing a series of CdSe/CdS-based QDs wherein the core and the shell are separated by an intermediate layer of a CdSexS1-x alloy comprised of 1-5 sublayers with a radially tuned composition. As inferred from single-dot measurements, use of the five-step grading scheme allows for strong suppression of Auger decay for both biexcitons and charged excitons. Further, due to nearly identical emissivities of neutral and charged excitons, these QDs exhibit an interesting phenomenon of lifetime blinking for which random fluctuations of a photoluminescence lifetime occur for a nearly constant emission intensity.

14.
ACS Nano ; 11(8): 8437-8447, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28723072

RESUMO

Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdS QDs with two distinct core/shell interfacial profiles ("sharp" versus "smooth"). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. By comparing the measurements on the QDs with the "sharp" versus "smooth" interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. These findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states, suggesting its generality to quantum-confined nanocrystals of arbitrary compositions and complexities.

15.
Nano Lett ; 17(7): 4508-4517, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613906

RESUMO

Ternary CuInS2 nanocrystals (CIS NCs) are attracting attention as nontoxic alternatives to heavy metal-based chalcogenides for many technologically relevant applications. The photophysical processes underlying their emission mechanism are, however, still under debate. Here we address this problem by applying, for the first time, spectro-electrochemical methods to core-only CIS and core/shell CIS/ZnS NCs. The application of an electrochemical potential enables us to reversibly tune the NC Fermi energy and thereby control the occupancy of intragap defects involved in exciton decay. The results indicate that, in analogy to copper-doped II-VI NCs, emission occurs via radiative capture of a conduction-band electron by a hole localized on an intragap state likely associated with a Cu-related defect. We observe the increase in the emission efficiency under reductive electrochemical potential, which corresponds to raising the Fermi level, leading to progressive filling of intragap states with electrons. This indicates that the factor limiting the emission efficiency in these NCs is nonradiative electron trapping, while hole trapping is of lesser importance. This observation also suggests that the centers for radiative recombination are Cu2+ defects (preexisting and/or accumulated as a result of photoconversion of Cu1+ ions) as these species contain a pre-existing hole without the need for capturing a valence-band hole generated by photoexcitation. Temperature-controlled photoluminescence experiments indicate that the intrinsic limit on the emission efficiency is imposed by multiphonon nonradiative recombination of a band-edge electron and a localized hole. This process affects both shelled and unshelled CIS NCs to a similar degree, and it can be suppressed by cooling samples to below 100 K. Finally, using experimentally measured decay rates, we formulate a model that describes the electrochemical modulation of the PL efficiency in terms of the availability of intragap electron traps as well as direct injection of electrons into the NC conduction band, which activates nonradiative Auger recombination, or electrochemical conversion of the Cu2+ states into the Cu1+ species that are less emissive due to the need for their "activation" by the capture of photogenerated holes.

16.
J Am Chem Soc ; 139(19): 6644-6653, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28431206

RESUMO

The use of semiconductor nanocrystal quantum dots (QDs) in optoelectronic devices typically requires postsynthetic chemical surface treatments to enhance electronic coupling between QDs and allow for efficient charge transport in QD films. Despite their importance in solar cells and infrared (IR) light-emitting diodes and photodetectors, advances in these chemical treatments for lead chalcogenide (PbE; E = S, Se, Te) QDs have lagged behind those of, for instance, II-VI semiconductor QDs. Here, we introduce a method for fast and effective ligand exchange for PbE QDs in solution, resulting in QDs completely passivated by a wide range of small anionic ligands. Due to electrostatic stabilization, these QDs are readily dispersible in polar solvents, in which they form highly concentrated solutions that remain stable for months. QDs of all three Pb chalcogenides retain their photoluminescence, allowing for a detailed study of the effect of the surface ionic double layer on electronic passivation of QD surfaces, which we find can be explained using the hard/soft acid-base theory. Importantly, we prepare highly conductive films of PbS, PbSe, and PbTe QDs by directly casting from solution without further chemical treatment, as determined by field-effect transistor measurements. This method allows for precise control over the surface chemistry, and therefore the transport properties of deposited films. It also permits single-step deposition of films of unprecedented thickness via continuous processing techniques, as we demonstrate by preparing a dense, smooth, 5.3-µm-thick PbSe QD film via doctor-blading. As such, it offers important advantages over laborious layer-by-layer methods for solar cells and photodetectors, while opening the door to new possibilities in ionizing-radiation detectors.

17.
Nature ; 544(7648): 75-79, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28321128

RESUMO

Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material, as well as a narrow emission linewidth. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action. State degeneracy also broadens the photoluminescence linewidth at the single-particle level. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.

18.
Nano Lett ; 17(3): 1787-1795, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28169547

RESUMO

Quantum dots (QDs) of ternary I-III-VI2 compounds such as CuInS2 and CuInSe2 have been actively investigated as heavy-metal-free alternatives to cadmium- and lead-containing semiconductor nanomaterials. One serious limitation of these nanostructures, however, is a large photoluminescence (PL) line width (typically >300 meV), the origin of which is still not fully understood. It remains even unclear whether the observed broadening results from considerable sample heterogeneities (due, e.g., to size polydispersity) or is an unavoidable intrinsic property of individual QDs. Here, we answer this question by conducting single-particle measurements on a new type of CuInS2 (CIS) QDs with an especially thick ZnS shell. These QDs show a greatly enhanced photostability compared to core-only or thin-shell samples and, importantly, exhibit a strongly suppressed PL blinking at the single-dot level. Spectrally resolved measurements reveal that the single-dot, room-temperature PL line width is much narrower (down to ∼60 meV) than that of the ensemble samples. To explain this distinction, we invoke a model wherein PL from CIS QDs arises from radiative recombination of a delocalized band-edge electron and a localized hole residing on a Cu-related defect and also account for the effects of electron-hole Coulomb coupling. We show that random positioning of the emitting center in the QD can lead to more than 300 meV variation in the PL energy, which represents at least one of the reasons for large PL broadening of the ensemble samples. These results suggest that in addition to narrowing size dispersion, future efforts on tightening the emission spectra of these QDs might also attempt decreasing the "positional" heterogeneity of the emitting centers.

19.
J Am Chem Soc ; 139(6): 2152-2155, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28099009

RESUMO

We demonstrate controlled synthesis of discrete two-dimensional (2D) PbSe nanoplatelets (NPLs), with measurable photoluminescence, via oriented attachment directed by quantum dot (QD) surface chemistry. Halide passivation is critical to the growth of these (100) face-dominated NPLs, as corroborated by density functional theory studies. PbCl2 moieties attached to the (111) and (110) of small nanocrystals form interparticle bridges, aligning the QDs and leading to attachment. We find that a 2D bridging network is energetically favored over a 3D network, driving the formation of NPLs. Although PbI2 does not support bridging, its presence destabilizes the large (100) faces of NPLs, providing means for tuning NPL thickness. Spectroscopic analysis confirms the predicted role of thickness-dependent quantum confinement on the NPL band gap.

20.
Nano Lett ; 17(2): 1071-1081, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28032501

RESUMO

Ratiometric pressure sensitive paints (r-PSPs) are all-optical probes for monitoring oxygen flows in the vicinity of complex or miniaturized surfaces. They typically consist of a porous binder embedding mixtures of a reference and a sensor chromophore exhibiting oxygen-insensitive and oxygen-responsive luminescence, respectively. Here, we demonstrate the first example of an r-PSP based on a single two-color emitter that removes limitations of r-PSPs based on chromophore mixtures such as different temperature dependencies of the two chromophores, cross-readout between the reference and sensor signals and phase segregation. In our approach, we utilize a novel "double-sensor" r-PSP that features two spectrally separated emission bands with opposite responses to the O2 pressure, which boosts the sensitivity with respect to traditional reference-sensor pairs. Specifically, we use two-color-emitting dot-in-bulk CdSe/CdS core/shell nanocrystals, exhibiting red and green emission bands from their core and shell states, whose intensities are respectively enhanced and quenched in response to the increased oxygen partial pressure that effectively tunes the position of the nanocrystal's Fermi energy. This leads to a strong and reversible ratiometric response at the single particle level and an over 100% enhancement in the pressure sensitivity. Our proof-of-concept r-PSPs further exhibit suppressed cross-readout thanks to zero spectral overlap between the core and shell luminescence bands and a temperature-independent ratiometric response between 0 and 70 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA