Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Phys Chem Chem Phys ; 21(36): 20262-20268, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31490493


A topological nodal line semimetal is a novel state of matter in which the gapless bulk state extends along the Brillouin zone forming a closed 1D Fermi surface. Here, we theoretically predict that the layered halide carbide Y2C2I2 is a novel metal containing interconnected nodal lines protected by the parallel mirror planes kz = 0 and kz = 0.5, characterized by independent mirror Chern numbers (MCNs) |µ1| = |µ| = 1. Because of the interlocking 2D nodal lines stacked along the c-axis direction, the topological property is robust both in the 3D bulk as a topological chain metal and in the 2D nanostructure as a topological nodal line. Consequently, Y2C2I2 and other related layered halide carbide materials are unique candidates to realize functional topological devices due their size-independent topological properties.

ACS Appl Mater Interfaces ; 11(38): 35420-35428, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31448588


Heterostructures exhibiting perpendicular magnetic anisotropy (PMA) have traditionally served the magnetic recording industry. However, an opportunity exists to expand the applications of PMA heterostructures into the realm of hydrogen sensing using ferromagnetic resonance (FMR) by exploiting the hydrogen-induced modifications to PMA that occur at the interface between Pd and a ferromagnet. Here, we present the first in operando depth-resolved study of the in-plane interfacial magnetization of a Co/Pd film which features tailorable PMA in the presence of hydrogen gas. We combine polarized neutron reflectometry with in situ FMR to explore how the absorption of hydrogen at the Co/Pd interface affects the heterostructures spin-resonance condition during hydrogen cycling. Experimental data and modeling reveal that the Pd layer expands when exposed to hydrogen gas, while the in-plane magnetic moment of the Co/Pd film increases as the interfacial PMA is reduced to affect the FMR frequency. This work highlights a potential route for magnetic hydrogen gas sensing.

J Phys Condens Matter ; 30(31): 315804, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-29964268


We report on artificial exchange bias created in a continuous epitaxial FePt3 film by introducing chemical disorder using a He+ beam, which features tailorable exchange bias strength through post-irradiation annealing. By design, the ferromagnetic (FM)/antiferromagnetic (AF) heterostructure exhibits stratified degrees of chemical order; however, the chemical composition and stoichiometry are invariant throughout the film volume. This uniquely allows for a consideration purely of the magnetic exchange across the FM/AF interface without the added hindrance of structural boundary parameters which inherently affect exchange bias quality. Annealing at 840 K results in the strongest exchange biased system, which displays a cross-sectional morphology of fine (<10 nm) domain structure composed of both of chemically ordered and chemically disordered domains. A magnetic model developed from fitting the characteristic polarised neutron reflectometry spectral features reveals that dual interactions can be attributed to the observed exchange bias: magnetic coupling at the FM/AF interface and also between neighbouring FM (chemically disordered) and AF (chemically ordered) domains within the nominally FM layer. Our results indicate that exchange bias is hindered at interfaces which are both chemically and magnetically perfect, while annealing can be used to balance the volume proportions of interfacial FM and AF domains to enhance the magnetic interface roughness for customisable exchange bias in mono-stoichiometric FM/AF heterostructures crafted by ion beams.

Nanoscale ; 10(40): 18995-19003, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-29845139


The interaction between superconductivity and magnetism in spatially confined heterostructures of thin film multilayers is investigated in the ferromagnetic manganite La2/3Ca1/3MnO3 (LCMO) and the high-temperature superconductor YBa2Cu3O7-δ (YBCO) mediated by an intermediate insulating SrTiO3 (STO) layer. The STO layer is used to mediate and tune the range of interactions between the ferromagnet and superconductor. A magnetically depleted layer with zero-magnetisation within the LCMO layer is shown by polarised neutron reflectometry measurements. This zero-magnetisation layer is caused by the onset of superconductivity in YBCO despite being separated by an insulating layer with a thickness much larger than the superconducting coherence length. The magnetic field dependence of this interaction is also explored. We show that the magnetism of the depleted layer can be restored by applying a magnetic field that partially destroys the superconductivity in YBCO, restricting the electronic interaction between the materials.

ACS Appl Mater Interfaces ; 10(18): 16216-16224, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29701447


Using ion beams to locally modify material properties and subsequently drive magnetic phase transitions is rapidly gaining momentum as the technique of choice for the fabrication of magnetic nanoelements. This is because the method provides the capability to engineer in three dimensions on the nanometer length scale. This will be an important consideration for several emerging magnetic technologies (e.g., spintronic devices and racetrack and random-access memories) where device functionality will hinge on the spatial definition of the incorporated magnetic nanoelements. In this work, the fundamental sharpness of a magnetic interface formed by nanomachining FePt3 films using He+ irradiation is investigated. Through careful selection of the irradiating ion energy and fluence, room-temperature ferromagnetism is locally induced into a fractional volume of a paramagnetic (PM) FePt3 film by modifying the chemical order parameter. A combination of transmission electron microscopy, magnetometry, and polarized neutron reflectometry measurements demonstrates that the interface over which the PM-to-ferromagnetic modulation occurs in this model system is confined to a few atomic monolayers only, while the structural boundary transition is less well-defined. Using complementary density functional theory, the mechanism for the ion-beam-induced magnetic transition is elucidated and shown to be caused by an intermixing of Fe and Pt atoms in antisite defects above a threshold density.

ACS Appl Mater Interfaces ; 9(10): 8783-8795, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28229601


High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 µB per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO2-δ nanocomposites, thus confirming the pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co0, with a minor fraction of Co2+. The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund's rules for Co0, which is unusual because the transition metal's magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.