Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32910634

RESUMO

Cluster superlattice membranes consist of a two-dimensional hexagonal lattice of similar-sized nanoclusters sandwiched between single-crystal graphene and an amorphous carbon matrix. The fabrication process involves three main steps, the templated self-organization of a metal cluster superlattice on epitaxial graphene on Ir(111), conformal embedding in an amorphous carbon matrix, and subsequent lift-off from the Ir(111) substrate. The mechanical stability provided by the carbon-graphene matrix makes the membrane stable as a free-standing material and enables transfer to other substrates. The fabrication procedure can be applied to a wide variety of cluster materials and cluster sizes from the single-atom limit to clusters of a few hundred atoms, as well as other two-dimensional layer/host matrix combinations. The versatility of the membrane composition, its mechanical stability, and the simplicity of the transfer procedure make cluster superlattice membranes a promising material in catalysis, magnetism, energy conversion, and optoelectronics.

2.
J Phys Condens Matter ; 32(41): 413003, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32438360

RESUMO

In this topical review we catagorise all ambient pressure x-ray photoelectron spectroscopy publications that have appeared between the 1970s and the end of 2018 according to their scientific field. We find that catalysis, surface science and materials science are predominant, while, for example, electrocatalysis and thin film growth are emerging. All catalysis publications that we could identify are cited, and selected case stories with increasing complexity in terms of surface structure or chemical reaction are discussed. For thin film growth we discuss recent examples from chemical vapour deposition and atomic layer deposition. Finally, we also discuss current frontiers of ambient pressure x-ray photoelectron spectroscopy research, indicating some directions of future development of the field.

3.
Sci Rep ; 10(1): 6705, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317712

RESUMO

In the production of 2nd generation ethanol, using Saccharomyces cerevisiae, the highest productivity obtained using C5/C6 fermenting yeast is in the co-fermentation phase, in which xylose and glucose are fermented simultaneously. Extending this phase in a fed-batch process increases the yield, rate and additionally reduces needed yeast amount for pitching. Extending this phase, as long as possible, would further enhance yield and economy of the process. To realise the concept a fermentation monitoring technique was developed and applied. Based on online measured refractive index an optimal residual sugar concentration could be maintained in the primary fermentor during the feed phase, requiring little knowledge of the nature of the substrate. The system was able to run stably for at least five fermentor volumes giving an ethanol yield >90% throughout the run. This was achieved with addition of only urea to the wheat straw hydrolysate and with an initial yeast pitch of 0.2 g/L total of finished broth. It has the potential to improve the fermentation technology used in fuel ethanol plants, which could help to meet the growing demand for more sustainable fuels.

4.
Nat Commun ; 9(1): 1412, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651110

RESUMO

Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

5.
J Phys Chem B ; 122(2): 721-729, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28862459

RESUMO

The interaction of CO with the Fe3O4(001)-(√2 × âˆš2)R45° surface was studied using temperature-programmed desorption (TPD), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS), the latter both under ultrahigh vacuum (UHV) conditions and in CO pressures up to 1 mbar. In general, the CO-Fe3O4 interaction is found to be weak. The strongest adsorption occurs at surface defects, leading to small TPD peaks at 115, 130, and 190 K. Desorption from the regular surface occurs in two distinct regimes. For coverages up to two CO molecules per (√2 × âˆš2)R45° unit cell, the desorption maximum shows a large shift with increasing coverage, from initially 105 to 70 K. For coverages between 2 and 4 molecules per (√2 × âˆš2)R45° unit cell, a much sharper desorption feature emerges at ∼65 K. Thermodynamic analysis of the TPD data suggests a phase transition from a dilute 2D gas into an ordered overlayer with CO molecules bound to surface Fe3+ sites. XPS data acquired at 45 K in UHV are consistent with physisorption. Some carbon-containing species are observed in the near-ambient-pressure XPS experiments at room temperature but are attributed to contamination and/or reaction with CO with water from the residual gas. No evidence was found for surface reduction or carburization by CO molecules.

6.
ACS Nano ; 12(1): 513-520, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29253339

RESUMO

Hydrogen functionalization of graphene by exposure to vibrationally excited H2 molecules is investigated by combined scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, X-ray photoelectron spectroscopy measurements, and density functional theory calculations. The measurements reveal that vibrationally excited H2 molecules dissociatively adsorb on graphene on Ir(111) resulting in nanopatterned hydrogen functionalization structures. Calculations demonstrate that the presence of the Ir surface below the graphene lowers the H2 dissociative adsorption barrier and allows for the adsorption reaction at energies well below the dissociation threshold of the H-H bond. The first reacting H2 molecule must contain considerable vibrational energy to overcome the dissociative adsorption barrier. However, this initial adsorption further activates the surface resulting in reduced barriers for dissociative adsorption of subsequent H2 molecules. This enables functionalization by H2 molecules with lower vibrational energy, yielding an avalanche effect for the hydrogenation reaction. These results provide an example of a catalytically active graphene-coated surface and additionally set the stage for a re-interpretation of previous experimental work involving elevated H2 background gas pressures in the presence of hot filaments.

7.
Nano Lett ; 17(5): 3105-3112, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28426934

RESUMO

Our scanning tunneling microscopy and X-ray photoelectron spectroscopy experiments along with first-principles calculations uncover the rich phenomenology and enable a coherent understanding of carbon vapor interaction with graphene on Ir(111). At high temperatures, carbon vapor not only permeates to the metal surface but also densifies the graphene cover. Thereby, in addition to underlayer graphene growth, upon cool down also severe wrinkling of the densified graphene cover is observed. In contrast, at low temperatures the adsorbed carbon largely remains on top and self-organizes into a regular array of fullerene-like, thermally highly stable clusters that are covalently bonded to the underlying graphene sheet. Thus, a new type of predominantly sp2-hybridized nanostructured and ultrathin carbon material emerges, which may be useful to encage or stably bind metal in finely dispersed form.

8.
Appl Microbiol Biotechnol ; 101(12): 4883-4893, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28353001

RESUMO

The production of natural aroma compounds is an expanding field within the branch of white biotechnology. Three aromatic compounds of interest are cinnamaldehyde, the typical cinnamon aroma that has applications in agriculture and medical sciences, as well as cinnamyl alcohol and hydrocinnamyl alcohol, which have applications in the cosmetic industry. Current production methods, which rely on extraction from plant materials or chemical synthesis, are associated with drawbacks regarding scalability, production time, and environmental impact. These considerations make the development of a sustainable microbial-based production highly desirable. Through steps of rational metabolic engineering, we engineered the yeast Saccharomyces cerevisiae as a microbial host to produce trans-cinnamic acid derivatives cinnamaldehyde, cinnamyl alcohol, and hydrocinnamyl alcohol, from externally added trans-cinnamic acid or de novo from glucose as a carbon source. We show that the desired products can be de novo synthesized in S. cerevisiae via the heterologous overexpression of the genes encoding phenylalanine ammonia lyase 2 from Arabidopsis thaliana (AtPAL2), aryl carboxylic acid reductase (acar) from Nocardia sp., and phosphopantetheinyl transferase (entD) from Escherichia coli, together with endogenous alcohol dehydrogenases. This study provides a proof of concept and a strain that can be further optimized for production of high-value aromatic compounds.


Assuntos
Cinamatos/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Acroleína/análogos & derivados , Acroleína/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Vias Biossintéticas , Cinamatos/química , Escherichia coli/enzimologia , Escherichia coli/genética , Glucose/metabolismo , Nocardia/enzimologia , Nocardia/genética , Oxirredutases/genética , Fenilalanina Amônia-Liase/genética , Estudo de Prova de Conceito , Propanóis/metabolismo
9.
J Synchrotron Radiat ; 24(Pt 1): 344-353, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009577

RESUMO

SPECIES is an undulator-based soft X-ray beamline that replaced the old I511 beamline at the MAX II storage ring. SPECIES is aimed at high-resolution ambient-pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine-structure (NEXAFS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) experiments. The beamline has two branches that use a common elliptically polarizing undulator and monochromator. The beam is switched between the two branches by changing the focusing optics after the monochromator. Both branches have separate exit slits, refocusing optics and dedicated permanent endstations. This allows very fast switching between two types of experiments and offers a unique combination of the surface-sensitive XPS and bulk-sensitive RIXS techniques both in UHV and at elevated ambient-pressure conditions on a single beamline. Another unique property of the beamline is that it reaches energies down to approximately 27 eV, which is not obtainable on other current APXPS beamlines. This allows, for instance, valence band studies under ambient-pressure conditions. In this article the main properties and performance of the beamline are presented, together with selected showcase experiments performed on the new setup.

10.
ACS Nano ; 10(12): 10798-10807, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024374

RESUMO

Band gap engineering in hydrogen functionalized graphene is demonstrated by changing the symmetry of the functionalization structures. Small differences in hydrogen adsorbate binding energies on graphene on Ir(111) allow tailoring of highly periodic functionalization structures favoring one distinct region of the moiré supercell. Scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements show that a highly periodic hydrogen functionalized graphene sheet can thus be prepared by controlling the sample temperature (Ts) during hydrogen functionalization. At deposition temperatures of Ts = 645 K and above, hydrogen adsorbs exclusively on the HCP regions of the graphene/Ir(111) moiré structure. This finding is rationalized in terms of a slight preference for hydrogen clusters in the HCP regions over the FCC regions, as found by density functional theory calculations. Angle-resolved photoemission spectroscopy measurements demonstrate that the preferential functionalization of just one region of the moiré supercell results in a band gap opening with very limited associated band broadening. Thus, hydrogenation at elevated sample temperatures provides a pathway to efficient band gap engineering in graphene via the selective functionalization of specific regions of the moiré structure.

11.
J Chem Phys ; 144(9): 094702, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26957171

RESUMO

We have examined the geometric and electronic structures of iron phthalocyanine assemblies on a Cu(111) surface at different sub- to mono-layer coverages and the changes induced by thermal annealing at temperatures between 250 and 320 °C by scanning tunneling microscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy. The symmetry breaking observed in scanning tunneling microscopy images is found to be coverage dependent and to persist upon annealing. Further, we find that annealing to temperatures between 300 and 320 °C leads to both desorption of iron phthalocyanine molecules from the surface and their agglomeration. We see clear evidence of temperature-induced homocoupling reactions of the iron phthalocyanine molecules following dehydrogenation of their isoindole rings, similar to what has been observed for related tetrapyrroles on transition metal surfaces. Finally, spectroscopy indicates a modified substrate-adsorbate interaction upon annealing with a shortened bond distance. This finding could potentially explain a changed reactivity of Cu-supported iron phthalocyanine in comparison to that of the pristine compound.

12.
Microb Cell Fact ; 15: 37, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26879378

RESUMO

BACKGROUND: Saccharomyces cerevisiae can be engineered to perform a multitude of different chemical reactions that are not programmed in its original genetic code. It has a large potential to function as whole-cell biocatalyst for one-pot multistep synthesis of various organic molecules, and it may thus serve as a powerful alternative or complement to traditional organic synthetic routes for new chemical entities (NCEs). However, although the selectivity in many cases is high, the catalytic activity is often low which results in low space-time-yields. In the case for NADH-dependent heterologous reductive reactions, a possible constraint is the availability of cytosolic NADH, which may be limited due to competition with native oxidative enzymes that act to maintain redox homeostasis. In this study, the effect of increasing the availability of cytosolic NADH on the catalytic activity of engineered yeast for transamination-reduction coupled asymmetric one-pot conversion was investigated. RESULTS: A series of active whole-cell biocatalysts were constructed by over-expressing the (S)-selective ω-transaminase (VAMT) from Capsicum chinense together with the NADH-dependent (S)-selective alcohol dehydrogenase (SADH) originating from Rhodococcus erythropolis in strains with or without deletion of glycerol-3-phosphate dehydrogenases 1 and 2 (GPD1 and GPD2). The yeast strains were evaluated as catalysts for simultaneous: (a) kinetic resolution of the racemic mixture to (R)-1-phenylethylamine, and (b) reduction of the produced acetophenone to (S)-1-phenylethanol. For the gpd1Δgpd2Δ strain, cell metabolism was effectively used for the supply of both amine acceptors and the co-factor pyridoxal-5'-phosphate (PLP) for the ω-transaminase, as well as for regenerating NADH for the reduction. In contrast, there was nearly no formation of (S)-1-phenylethanol when using the control strain with intact GPDs and over-expressing the VAMT-SADH coupling. It was found that a gpd1Δgpd2Δ strain over-expressing SADH had a 3-fold higher reduction rate and a 3-fold lower glucose requirement than the strain with intact GPDs over-expressing SADH. CONCLUSIONS: Overall the results demonstrate that the deletion of the GPD1 and GPD2 genes significantly increases activity of the whole-cell biocatalyst, and at the same time reduces the co-substrate demand in a process configuration where only yeast and sugar is added to drive the reactions, i.e. without addition of external co-factors or prosthetic groups.


Assuntos
Engenharia Metabólica/métodos , NAD/metabolismo , Oxirredutases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Transaminases/metabolismo , Acetofenonas/metabolismo , Álcool Desidrogenase/metabolismo , Benzaldeídos/metabolismo , Álcoois Benzílicos/metabolismo , Biocatálise , Glucose/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Metaboloma , Fenetilaminas/metabolismo , Estereoisomerismo
14.
ACS Nano ; 9(3): 2445-53, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25693621

RESUMO

Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER; half of the catalytic "water splitting" reaction), particularly when promoted with gold. However, the surface chemistry of cobalt oxides and in particular the nature of the synergistic effect of gold contact are only understood on a rudimentary level, which at present prevents further exploration. We have synthesized a model system of flat, layered cobalt oxide nanoislands supported on a single crystal gold (111) substrate. By using a combination of atom-resolved scanning tunneling microscopy, X-ray photoelectron and absorption spectroscopies and density functional theory calculations, we provide a detailed analysis of the relationship between the atomic-scale structure of the nanoislands, Co oxidation states and substrate induced charge transfer effects in response to the synthesis oxygen pressure. We reveal that conversion from Co(2+) to Co(3+) can occur by a facile incorporation of oxygen at the interface between the nanoisland and gold, changing the islands from a Co-O bilayer to an O-Co-O trilayer. The O-Co-O trilayer islands have the structure of a single layer of ß-CoOOH, proposed to be the active phase for the OER, making this system a valuable model in understanding of the active sites for OER. The Co oxides adopt related island morphologies without significant structural reorganization, and our results directly demonstrate that nanosized Co oxide islands have a much higher structural flexibility than could be predicted from bulk properties. Furthermore, it is clear that the gold/nanoparticle interface has a profound effect on the structure of the nanoislands, suggesting a possible promotion mechanism.

15.
Phys Chem Chem Phys ; 17(8): 5795-804, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25626848

RESUMO

The correlation between surface structure, stoichiometry and atomic occupancy of the polar MgAl2O4(100) surface has been studied with an interplay of noncontact atomic force microscopy, X-ray photoelectron spectroscopy and surface X-ray diffraction under ultrahigh vacuum conditions. The Al/Mg ratio is found to significantly increase as the surface is sputtered and annealed in oxygen at intermediate temperatures ranging from 1073-1273 K. The Al excess is explained by the observed surface structure, where the formation of nanometer-sized pits and elongated patches with Al terminated step edges contribute to stabilizing the structure by compensating surface polarity. Surface X-ray diffraction reveals a reduced occupancy in the top two surface layers for both Mg, Al, and O and, moreover, vacancies are preferably located in octahedral sites, indicating that Al and Mg ions interchange sites. The excess of Al and high concentration of octahedral vacancies, very interestingly, indicates that the top few surface layers of the MgAl2O4(100) adopts a surface structure similar to that of a spinel-like transition Al2O3 film. However, after annealing at a high temperature of 1473 K, the Al/Mg ratio restores to its initial value, the occupancy of all elements increases, and the surface transforms into a well-defined structure with large flat terraces and straight step edges, indicating a restoration of the surface stoichiometry. It is proposed that the tetrahedral vacancies at these high temperatures are filled by Mg from the bulk, due to the increased mobility at high annealing temperatures.

16.
Biotechnol Rep (Amst) ; 7: 107-119, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28626720

RESUMO

A control point for keeping redox homeostasis in Saccharomyces cerevisiae during fermentative growth is the dynamic regulation of transcription for the glycerol-3-phosphate dehydrogenase 2 (GPD2) gene. In this study, the possibility to steer the activity of the GPD2 promoter was investigated by placing it in strains with different ability to reoxidise NADH, and applying different environmental conditions. Flow cytometric analysis of reporter strains expressing green fluorescent protein (GFP) under the control of the GPD2 promoter was used to determine the promoter activity at the single-cell level. When placed in a gpd1Δgpd2Δ strain background, the GPD2 promoter displayed a 2-fold higher activity as compared to the strong constitutive glyceraldehyde-3-phosphate dehydrogenase (TDH3). In contrast, the GPD2 promoter was found to be inactive when cells were cultivated in continuous mode at a growth rate of 0.3 h-1 and in conditions with excess oxygen (i.e. with an aeration of 2.5 vvm, and a stirring of 800 rpm). In addition, a clear window of operation where the gpd1Δgpd2Δ strain can be grown with the same efficiency as wild type yeast was identified. In conclusion, the flow cytometry mapping revealed conditions where the GPD2 promoter was either completely inactive or hyperactive, which has implications for its implementation in future biotechnological applications such as for process control of heterologous gene expression.

17.
AMB Express ; 4: 81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25401080

RESUMO

A reporter system was constructed to measure perturbations in the NADH/NAD(+) co-factor balance in yeast, by using the green fluorescent protein gene under the control of the GPD2 promoter that is induced under conditions of excess of NADH. High fluorescence levels were obtained in a glycerol 3-phosphate dehydrogenase double deletion strain (gpd1Δgpd2Δ), which is deficient in the ability to regenerate NAD(+) via glycerol formation. The responsiveness of the reporter system to externally induced perturbations in NADH oxidation was also evaluated in the gpd1Δgpd2Δ strain background by addition of acetoin, as well as by introduction of a set of heterologous xylose reductases (XRs) having different selectivities for NADH. Addition of acetoin during cell proliferation under oxygen-limited conditions resulted in a more than 2-fold decrease in mean fluorescence intensity as compared to the control experiment. Strains carrying XRs with different selectivities for NADH could be distinguished at the single cell level, so that the XR with the highest selectivity for NADH displayed the lowest fluorescence. In conclusion, the designed system successfully allowed for monitoring perturbations in the cellular redox metabolism caused by environmental changes, or by heterologous gene expression. The reporter system displayed high resolution in distinguishing cytosolic NADH oxidation capacity and hence has potential to be used for high-throughput screening based on the fluorescence of single cells.

18.
Nat Commun ; 5: 4193, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24979078

RESUMO

The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule-molecule and molecule-surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moiré-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moiré structure.

20.
ACS Nano ; 7(3): 2020-31, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23379255

RESUMO

Regular Pt cluster arrays grown on the moiré template formed by graphene on Ir(111) were tested for their stability with respect to CO gas exposure. Cluster stability and adsorption-induced processes were analyzed as a function of cluster size, with in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. Small clusters containing fewer than 10 atoms were unstable upon CO adsorption. They sintered through Smoluchowski ripening-cluster diffusion and coalescence-rather than the frequently reported Ostwald ripening mediated by metal-adsorbate complexes. Larger clusters remained immobile upon CO adsorption but became more three-dimensional. Careful analysis of the experimental data complemented by ab initio density functional theory calculations provides insight into the origin of the CO-induced Pt cluster ripening and shape transformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA