Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
EMBO Rep ; 20(8): e47604, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31271494


The essential splicing factor U2AF65 is known to help anchoring U2 snRNP at the branch site. Its C-terminal UHM domain interacts with ULM motifs of SF3b155, an U2 snRNP protein. Here, we report a cooperative binding of U2AF65 and the related protein CAPERα to the multi-ULM domain of SF3b155. In addition, we show that the RS domain of U2AF65 drives a liquid-liquid phase separation that is amplified by intronic RNA with repeated pyrimidine tracts. In cells, knockdown of either U2AF65 or CAPERα improves the inclusion of cassette exons that are preceded by such repeated pyrimidine-rich motifs. These results support a model in which liquid-like assemblies of U2AF65 and CAPERα on repetitive pyrimidine-rich RNA sequences are driven by their RS domains, and facilitate the recruitment of the multi-ULM domain of SF3b155. We anticipate that posttranslational modifications and proteins recruited in dynamical U2AF65 and CAPERα condensates may further contribute to the complex mechanisms leading to specific splice site choice that occurs in cells.

Biochimie ; 164: 3-16, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30995539


Prokaryotes encounter constant and often brutal modifications to their environment. In order to survive, they need to maintain fitness, which includes adapting their protein expression patterns. Many factors control gene expression but this review focuses on just one, namely antisense RNAs (asRNAs), a class of non-coding RNAs (ncRNAs) characterized by their location in cis and their perfect complementarity with their targets. asRNAs were considered for a long time to be trivial and only to be found on mobile genetic elements. However, recent advances in methodology have revealed that their abundance and potential activities have been underestimated. This review aims to illustrate the role of asRNA in various physiologically crucial functions in both archaea and bacteria, which can be regrouped in three categories: cell maintenance, horizontal gene transfer and virulence. A literature survey of asRNAs demonstrates the difficulties to characterize and assign a role to asRNAs. With the aim of facilitating this task, we describe recent technological advances that could be of interest to identify new asRNAs and to discover their function.

Archaea , Bactérias , Fenômenos Fisiológicos Bacterianos/genética , Transferência Genética Horizontal/genética , RNA Antissenso , Virulência/genética , Archaea/genética , Archaea/patogenicidade , Archaea/fisiologia , Bactérias/genética , Bactérias/patogenicidade , Regulação da Expressão Gênica em Archaea , Regulação Bacteriana da Expressão Gênica , RNA Antissenso/genética , RNA Antissenso/fisiologia , RNA Arqueal/genética , RNA Arqueal/fisiologia , RNA Bacteriano/genética , RNA Bacteriano/fisiologia