Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31624126

RESUMO

Biological embedding occurs when life experience alters biological processes to affect later life health and well-being. Although extensive correlative data exist supporting the notion that epigenetic mechanisms such as DNA methylation underlie biological embedding, causal data are lacking. We describe specific epigenetic mechanisms and their potential roles in the biological embedding of experience. We also consider the nuanced relationships between the genome, the epigenome, and gene expression. Our ability to connect biological embedding to the epigenetic landscape in its complexity is challenging and complicated by the influence of multiple factors. These include cell type, age, the timing of experience, sex, and DNA sequence. Recent advances in molecular profiling and epigenome editing, combined with the use of comparative animal and human longitudinal studies, should enable this field to transition from correlative to causal analyses.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31611402

RESUMO

The development of biological markers of aging has primarily focused on adult samples. Epigenetic clocks are a promising tool for measuring biological age that show impressive accuracy across most tissues and age ranges. In adults, deviations from the DNA methylation (DNAm) age prediction are correlated with several age-related phenotypes, such as mortality and frailty. In children, however, fewer such associations have been made, possibly because DNAm changes are more dynamic in pediatric populations as compared to adults. To address this gap, we aimed to develop a highly accurate, noninvasive, biological measure of age specific to pediatric samples using buccal epithelial cell DNAm. We gathered 1,721 genome-wide DNAm profiles from 11 different cohorts of typically developing individuals aged 0 to 20 y old. Elastic net penalized regression was used to select 94 CpG sites from a training dataset (n = 1,032), with performance assessed in a separate test dataset (n = 689). DNAm at these 94 CpG sites was highly predictive of age in the test cohort (median absolute error = 0.35 y). The Pediatric-Buccal-Epigenetic (PedBE) clock was characterized in additional cohorts, showcasing the accuracy in longitudinal data, the performance in nonbuccal tissues and adult age ranges, and the association with obstetric outcomes. The PedBE tool for measuring biological age in children might help in understanding the environmental and contextual factors that shape the DNA methylome during child development, and how it, in turn, might relate to child health and disease.

3.
Transl Psychiatry ; 9(1): 245, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582756

RESUMO

The stress response system is disrupted in individuals with major depressive disorder (MDD) as well as in those at elevated risk for developing MDD. We examined whether DNA methylation (DNAm) levels of CpG sites within HPA-axis genes predict the onset of MDD. Seventy-seven girls, approximately half (n = 37) of whom were at familial risk for MDD, were followed longitudinally. Saliva samples were taken in adolescence (M age = 13.06 years [SD = 1.52]) when participants had no current or past MDD diagnosis. Diagnostic interviews were administered approximately every 18 months until the first onset of MDD or early adulthood (M age of last follow-up = 19.23 years [SD = 2.69]). We quantified DNAm in saliva samples using the Illumina EPIC chip and examined CpG sites within six key HPA-axis genes (NR3C1, NR3C2, CRH, CRHR1, CRHR2, FKBP5) alongside 59 genotypes for tagging SNPs capturing cis genetic variability. DNAm levels within CpG sites in NR3C1, CRH, CRHR1, and CRHR2 were associated with risk for MDD across adolescence and young adulthood. To rule out the possibility that findings were merely due to the contribution of genetic variability, we re-analyzed the data controlling for cis genetic variation within these candidate genes. Importantly, methylation levels in these CpG sites continued to significantly predict the onset of MDD, suggesting that variation in the epigenome, independent of proximal genetic variants, prospectively predicts the onset of MDD. These findings suggest that variation in the HPA axis at the level of the methylome may predict the development of MDD.

4.
Mutagenesis ; 2019 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-31587037

RESUMO

DNA methylation has been widely studied for associations with exposures and health outcomes. Both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are epigenetic marks that may function differently to impact gene expression; however, the most commonly used technology to assess methylation for population studies in blood use are the Illumina 450K and EPIC BeadChips, for which the traditional bisulfite conversion does not differentiate 5mC and 5hmC marks. We used a modified protocol originally developed by Stewart et al. to analyse oxidative bisulfite-converted and conventional bisulfite-converted DNA for the same subject in parallel by the EPIC chip, allowing us to isolate the two measures. We measured 5mC and 5hmC in cord blood of 41 newborn participants of the Center for Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth cohort and investigated differential methylation of 5mC + 5hmC, isolated 5mC and isolated 5hmC with sex at birth as an example of a biological variable previously associated with DNA methylation. Results showed low levels of 5hmC throughout the epigenome in the cord blood samples in comparison to 5mC. The concordance of autosomal hits between 5mC + 5hmC and exclusive 5mC analyses were low (25%); however, overlap was larger with increased effect size difference. There were 43 autosomal cytosine nucleotide followed by a guanine nucleotide (CpG) sites where 5hmC was associated with sex, 21 of which were unique to 5hmC after adjustment for cell composition. 5hmC only accounts for a small portion of overall methylation in cord blood; however, it has the potential to impact interpretation of combined 5hmC + 5mC studies in cord blood, especially given that effect sizes of differential methylation analyses are often small. Several significant CpG sites were unique to 5hmC, suggesting some functions distinct from 5mC. More studies of genome-wide 5hmC in children are warranted.

5.
Sci Rep ; 9(1): 14409, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31595000

RESUMO

The airway epithelium forms the interface between the inhaled environment and the lung. The airway epithelium is dysfunctional in asthma and epigenetic mechanisms are considered a contributory factor. We hypothesised that the DNA methylation profiles of cultured primary airway epithelial cells (AECs) would differ between cells isolated from individuals with asthma (n = 17) versus those without asthma (n = 16). AECs were isolated from patients by two different isolation techniques; pronase digestion (9 non-asthmatic, 8 asthmatic) and bronchial brushings (7 non-asthmatic and 9 asthmatic). DNA methylation was assessed using an Illumina Infinium HumanMethylation450 BeadChip array. DNA methylation of AECs clustered by isolation technique and linear regression identified 111 CpG sites differentially methylated between isolation techniques in healthy individuals. As a consequence, the effect of asthmatic status on DNA methylation was assessed within AEC samples isolated using the same technique. In pronase isolated AECs, 15 DNA regions were differentially methylated between asthmatics and non-asthmatics. In bronchial brush isolated AECs, 849 differentially methylated DNA regions were identified with no overlap to pronase regions. In conclusion, regardless of cell isolation technique, differential DNA methylation was associated with asthmatic status in AECs, providing further evidence for aberrant DNA methylation as a signature of epithelial dysfunction in asthma.

6.
J Biol Chem ; 294(44): 16080-16094, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31506296

RESUMO

Fcp1 is a protein phosphatase that facilitates transcription elongation and termination by dephosphorylating the C-terminal domain of RNA polymerase II. High-throughput genetic screening and gene expression profiling of fcp1 mutants revealed a novel connection to Cdk8, the Mediator complex kinase subunit, and Skn7, a key transcription factor in the oxidative stress response pathway. Briefly, Skn7 was enriched as a regulator of genes whose mRNA levels were altered in fcp1 and cdk8Δ mutants and was required for the suppression of fcp1 mutant growth defects by loss of CDK8 under oxidative stress conditions. Targeted analysis revealed that mutating FCP1 decreased Skn7 mRNA and protein levels as well as its association with target gene promoters but paradoxically increased the mRNA levels of Skn7-dependent oxidative stress-induced genes (TRX2 and TSA1) under basal and induced conditions. The latter was in part recapitulated via chemical inhibition of transcription in WT cells, suggesting that a combination of transcriptional and posttranscriptional effects underscored the increased mRNA levels of TRX2 and TSA1 observed in the fcp1 mutant. Interestingly, loss of CDK8 robustly normalized the mRNA levels of Skn7-dependent genes in the fcp1 mutant background and also increased Skn7 protein levels by preventing its turnover. As such, our work suggested that loss of CDK8 could overcome transcriptional and/or posttranscriptional alterations in the fcp1 mutant through its regulatory effect on Skn7. Furthermore, our work also implicated FCP1 and CDK8 in the broader response to environmental stressors in yeast.

7.
Nat Commun ; 10(1): 4265, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537797

RESUMO

Ectopic R-loop accumulation causes DNA replication stress and genome instability. To avoid these outcomes, cells possess a range of anti-R-loop mechanisms, including RNaseH that degrades the RNA moiety in R-loops. To comprehensively identify anti-R-loop mechanisms, we performed a genome-wide trigenic interaction screen in yeast lacking RNH1 and RNH201. We identified >100 genes critical for fitness in the absence of RNaseH, which were enriched for DNA replication fork maintenance factors including the MRE11-RAD50-NBS1 (MRN) complex. While MRN has been shown to promote R-loops at DNA double-strand breaks, we show that it suppresses R-loops and associated DNA damage at transcription-replication conflicts. This occurs through a non-nucleolytic function of MRE11 that is important for R-loop suppression by the Fanconi Anemia pathway. This work establishes a novel role for MRE11-RAD50-NBS1 in directing tolerance mechanisms at transcription-replication conflicts.

8.
Proc Natl Acad Sci U S A ; 116(38): 19098-19108, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471491

RESUMO

Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of MGMT expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31485989

RESUMO

Our social environment, from the microscopic to the macro-social, affects us for the entirety of our lives. One integral line of research to examine how interpersonal and societal environments can get "under the skin" is through the lens of epigenetics. Epigenetic mechanisms are adaptations made to our genome in response to our environment which include tags placed on and removed from the DNA itself to how our DNA is packaged, affecting how our genes are read, transcribed, and interact. These tags are affected by social environments and can persist over time; this may aid us in responding to experiences and exposures, both the enriched and the disadvantageous. From memory formation to immune function, the experience-dependent plasticity of epigenetic modifications to micro- and macro-social environments may contribute to the process of learning from comfort, pain, and stress to better survive in whatever circumstances life has in store.

10.
Aging Cell ; 18(6): e13028, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31496122

RESUMO

Epigenetic "clocks" can now surpass chronological age in accuracy for estimating biological age. Here, we use four such age estimators to show that epigenetic aging can be reversed in humans. Using a protocol intended to regenerate the thymus, we observed protective immunological changes, improved risk indices for many age-related diseases, and a mean epigenetic age approximately 1.5 years less than baseline after 1 year of treatment (-2.5-year change compared to no treatment at the end of the study). The rate of epigenetic aging reversal relative to chronological age accelerated from -1.6 year/year from 0-9 month to -6.5 year/year from 9-12 month. The GrimAge predictor of human morbidity and mortality showed a 2-year decrease in epigenetic vs. chronological age that persisted six months after discontinuing treatment. This is to our knowledge the first report of an increase, based on an epigenetic age estimator, in predicted human lifespan by means of a currently accessible aging intervention.

11.
Clin Epigenetics ; 11(1): 125, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455416

RESUMO

BACKGROUND: Umbilical cord blood (UCB) is commonly used in epigenome-wide association studies of prenatal exposures. Accounting for cell type composition is critical in such studies as it reduces confounding due to the cell specificity of DNA methylation (DNAm). In the absence of cell sorting information, statistical methods can be applied to deconvolve heterogeneous cell mixtures. Among these methods, reference-based approaches leverage age-appropriate cell-specific DNAm profiles to estimate cellular composition. In UCB, four reference datasets comprising DNAm signatures profiled in purified cell populations have been published using the Illumina 450 K and EPIC arrays. These datasets are biologically and technically different, and currently, there is no consensus on how to best apply them. Here, we systematically evaluate and compare these datasets and provide recommendations for reference-based UCB deconvolution. RESULTS: We first evaluated the four reference datasets to ascertain both the purity of the samples and the potential cell cross-contamination. We filtered samples and combined datasets to obtain a joint UCB reference. We selected deconvolution libraries using two different approaches: automatic selection using the top differentially methylated probes from the function pickCompProbes in minfi and a standardized library selected using the IDOL (Identifying Optimal Libraries) iterative algorithm. We compared the performance of each reference separately and in combination, using the two approaches for reference library selection, and validated the results in an independent cohort (Generation R Study, n = 191) with matched Fluorescence-Activated Cell Sorting measured cell counts. Strict filtering and combination of the references significantly improved the accuracy and efficiency of cell type estimates. Ultimately, the IDOL library outperformed the library from the automatic selection method implemented in pickCompProbes. CONCLUSION: These results have important implications for epigenetic studies in UCB as implementing this method will optimally reduce confounding due to cellular heterogeneity. This work provides guidelines for future reference-based UCB deconvolution and establishes a framework for combining reference datasets in other tissues.

12.
J Physiol ; 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31441069

RESUMO

KEY POINTS: Obstructive sleep apnoea (OSA) is characterized by intermittent hypoxia, which causes oxidative stress and inflammation and increases the risk of cardiovascular disease. OSA during pregnancy causes adverse maternal and fetal outcomes. The effects of pre-existing OSA in pregnant women on cardiometabolic outcomes in the offspring are unknown. We evaluated basic metabolic parameters, as well as aortic vascular and perivascular adipose tissue (PVAT) function in response to adiponectin, and examined DNA methylation of adiponectin gene promoter in PVAT in 16-week-old adult offspring exposed to gestational intermittent hypoxia (GIH). GIH decreased body weights at week 1 in both male and female offspring, and caused subsequent increases in body weight and food consumption in male offspring only. Adult female offspring had normal levels of lipids, glucose and insulin, with no endothelial dysfunction. Adult male offspring exhibited dyslipidaemia, insulin resistance and hyperleptinaemia. Decreased endothelial-dependent vasodilatation, loss of anti-contractile activity of PVAT and low circulating PVAT adiponectin levels, as well as increased pro-inflammatory gene expression and DNA methylation of adiponectin gene promoter, occurred in adult male offspring. Our results suggest that male offspring of women with OSA could be at risk of developing cardiometabolic disease during adulthood. ABSTRACT: Perturbations during pregnancy can program the offspring to develop cardiometabolic diseases later in life. Obstructive sleep apnoea (OSA) is a chronic condition that frequently affects pregnancies and leads to adverse fetal outcomes. We assessed the offspring of female mice experiencing gestational intermittent hypoxia (GIH), a hallmark of OSA, for changes in metabolic profiles, aortic nitric oxide (NO)-dependent relaxations, perivascular adipose tissue (PVAT) anti-contractile activities and the responses to adiponectin, and DNA methylation of the adiponectin gene promoter in PVAT tissue. Pregnant mouse dams were exposed to intermittent hypoxic cycles ( F I O 2 21-12%) for 18 days. GIH resulted in lower body weights of pups at week 1, followed by significant weight gain by week 16 of age in male but not female offspring. Plasma lipids, leptin and insulin resistance were higher in GIH male adult offspring. Endothelium-dependent relaxation in response to ACh and the anti-contractile activity of PVAT in the abdominal aorta was reduced in GIH adult male offspring. Incubation of arteries from GIH adult male offspring with adiponectin restored the anti-contractile activity of PVAT. Both circulating and PVAT tissue homogenate levels of adiponectin, as well as gene expression of adiponectin in PVAT, were lower in GIH male offspring, along with an increased gene expression of inflammatory cytokines. Pyrosequencing of adiponectin gene promoter in PVAT showed increased DNA methylation in GIH male offspring. Our results indicate that GIH leads to vascular disease in adult male offspring through PVAT dysfunction, which was associated with low adiponectin levels and epigenetic modifications on the adiponectin gene promoter.

14.
J Neurovirol ; 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286441

RESUMO

Chronic inflammation is characteristic of both HIV and aging ("inflammaging") and may contribute to the accelerated aging observed in people living with HIV (PLWH). We examined whether three inflammation-related single-nucleotide polymorphisms (SNPs) were risk factors for accelerated aging and HIV-associated, non-AIDS (HANA) conditions among PLWH. We examined 155 postmortem cases with HIV (mean age = 47.3, 81% male, 68% self-reported White) from the National NeuroAIDS Tissue Consortium who had pre-mortem neurobehavioral/medical/virologic data and epigenomic data from occipital cortex tissue. Accelerated aging was measured according to the Epigenetic Clock; an aging biomarker based on DNA methylation levels. Past or current age-associated HANA conditions including cerebrovascular, liver and kidney disease, chronic obstructive pulmonary disease, cancer, and diabetes were determined via self-report. Epigenetic Aging Z-scores and likelihood of past/current HANA conditions were compared between major allele homozygotes and minor allele carriers for each SNP (IL-6 - 174G>C, IL-10 - 592C>A, TNF-α - 308 G>A) separately. Analyses were adjusted for relevant demographic/clinical factors. Epigenetic aging (e.g., higher Z-scores) was significantly greater in IL-6 C allele carriers (p = .002) and IL-10 CC homozygotes (p = .02) compared to other genotype groups. The likelihood of any past/current HANA condition did not differ by IL-10 genotype but was 3.36 times greater in IL-6 C allele carriers versus others (OR = 3.36, 95%CI = 1.09-10.34, p = .03). TNF-α genotype was not associated with epigenetic aging or HANA conditions. IL-6 and IL-10 SNPs may help to identify PLWH who are at high risk for accelerated aging. These insights into pathophysiological pathways may inform interventional approaches to treat rapid aging among PLWH.

15.
Nat Commun ; 10(1): 2548, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186427

RESUMO

Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike's information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk.


Assuntos
Metilação de DNA/genética , DNA/sangue , Interação Gene-Ambiente , Estudos de Coortes , Epigênese Genética , Feminino , Sangue Fetal , Genótipo , Humanos , Recém-Nascido , Masculino , Gravidez , Fatores de Risco
16.
N Engl J Med ; 380(15): 1433-1441, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30970188

RESUMO

We report an inborn error of metabolism caused by an expansion of a GCA-repeat tract in the 5' untranslated region of the gene encoding glutaminase (GLS) that was identified through detailed clinical and biochemical phenotyping, combined with whole-genome sequencing. The expansion was observed in three unrelated patients who presented with an early-onset delay in overall development, progressive ataxia, and elevated levels of glutamine. In addition to ataxia, one patient also showed cerebellar atrophy. The expansion was associated with a relative deficiency of GLS messenger RNA transcribed from the expanded allele, which probably resulted from repeat-mediated chromatin changes upstream of the GLS repeat. Our discovery underscores the importance of careful examination of regions of the genome that are typically excluded from or poorly captured by exome sequencing.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Ataxia/genética , Deficiências do Desenvolvimento/genética , Glutaminase/deficiência , Glutaminase/genética , Glutamina/metabolismo , Repetições de Microssatélites , Mutação , Atrofia/genética , Cerebelo/patologia , Pré-Escolar , Feminino , Genótipo , Glutamina/análise , Humanos , Masculino , Fenótipo , Reação em Cadeia da Polimerase , Sequenciamento Completo do Genoma
17.
Genes Brain Behav ; 18(7): e12576, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31020763

RESUMO

The amygdala and hippocampus undergo rapid development in early life. The relative contribution of genetic and environmental factors to the establishment of their developmental trajectories has yet to be examined. We performed imaging on neonates and examined how the observed variation in volume and microstructure of the amygdala and hippocampus varied by genotype, and compared with prenatal maternal mental health and socioeconomic status. Gene × Environment models outcompeted models containing genotype or environment only to best explain the majority of measures but some, especially of the amygdaloid microstructure, were best explained by genotype only. Models including DNA methylation measured in the neonate umbilical cords outcompeted the Gene and Gene × Environment models for the majority of amygdaloid measures and minority of hippocampal measures. This study identified brain region-specific gene networks associated with individual differences in fetal brain development. In particular, genetic and epigenetic variation within CUX1 was highlighted.

18.
Artigo em Inglês | MEDLINE | ID: mdl-30858011

RESUMO

OBJECTIVE: Women exposed to childhood maltreatment (CM) are more likely to exhibit insensitive parenting, which may have consequences for their offspring's development. Variation in the oxytocin-receptor gene (OXTR) moderates risk of CM-associated long-term sequelae associated with mother-child attachment, although functionality of previously investigated single nucleotide polymorphisms (SNPs) remained elusive. Here, we investigated the role of OXTR rs237895, a brain tissue expression quantitative trait locus (eQTL), as a moderator of the relationship between CM and maternal behavior (MB) and the association between MB and offspring attachment security. METHOD: Of 110 women with information on rs237895 genotype (T-allele = 64, CC = 46), 107 had information on CM (CTQ) and 99 on standardized observer-based ratings of MB at 6 months postpartum (responsivity and detachment), which were used in principal component analysis to obtain a latent factor representing MB. Offspring (n = 86) attachment was evaluated at 12 months of age. Analyses predicting MB were adjusted for socioeconomic status, age, postpartum depression, and genotype-based ethnicity. Analyses predicting child attachment were adjusted for infant sex, socioeconomic status, and postpartum depression. RESULTS: rs237895 significantly moderated the relationship between CM and MB (F1;66 = 7.99, p < .01), indicating that CM was associated with maternal insensitivity only in high-OXTR-expressing T-allele carriers but not in low-OXTR-expressing CC homozygotes. Moreover, maternal insensitivity predicted offspring insecure attachment (B = -0.551; p < .05). CONCLUSION: Women with a high OXTR expressing genotype are more susceptible to CM-related impairments in MB that, in turn, predict attachment security in their children, supporting the role of the OT system in the intergenerational transmission of risk associated with maternal CM.

19.
EBioMedicine ; 42: 188-202, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30922963

RESUMO

BACKGROUND: Activation of brain insulin receptors modulates reward sensitivity, inhibitory control and memory. Variations in the functioning of this mechanism likely associate with individual differences in the risk for related mental disorders (attention deficit hyperactivity disorder or ADHD, addiction, dementia), in agreement with the high co-morbidity between insulin resistance and psychopathology. These neurobiological mechanisms can be explored using genetic studies. We propose a novel, biologically informed genetic score reflecting the mesocorticolimbic and hippocampal insulin receptor-related gene networks, and investigate if it predicts endophenotypes (impulsivity, cognitive ability) in community samples of children, and psychopathology (addiction, dementia) in adults. METHODS: Lists of genes co-expressed with the insulin receptor in the mesocorticolimbic system or hippocampus were created. SNPs from these genes (post-clumping) were compiled in a polygenic score using the association betas described in a conventional GWAS (ADHD in the mesocorticolimbic score and Alzheimer in the hippocampal score). Across multiple samples (n = 4502), the biologically informed, mesocorticolimbic or hippocampal specific insulin receptor polygenic scores were calculated, and their ability to predict impulsivity, risk for addiction, cognitive performance and presence of Alzheimer's disease was investigated. FINDINGS: The biologically-informed ePRS-IR score showed better prediction of child impulsivity and cognitive performance, as well as risk for addiction and Alzheimer's disease in comparison to conventional polygenic scores for ADHD, addiction and dementia. INTERPRETATION: This novel, biologically-informed approach enables the use of genomic datasets to probe relevant biological processes involved in neural function and disorders. FUND: Toxic Stress Research network of the JPB Foundation, Jacobs Foundation (Switzerland), Sackler Foundation.


Assuntos
Encéfalo/metabolismo , Endofenótipos , Estudos de Associação Genética , Predisposição Genética para Doença , Receptor de Insulina/genética , Encéfalo/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptor de Insulina/metabolismo , Reprodutibilidade dos Testes
20.
Clin Epigenetics ; 11(1): 26, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744680

RESUMO

BACKGROUND: Preterm birth (PTB), defined as child birth before completion of 37 weeks of gestation, is a major challenge in perinatal health care and can bear long-term medical and financial burden. Over a million children die each year due to PTB complications, and those who survive can face developmental delays. Unfortunately, our understanding of the molecular pathways associated with PTB remains limited. There is a growing body of evidence suggesting the role of DNA methylation (DNAm) in mediating the effects of PTB on future health outcomes. Thus, epigenome-wide association studies (EWAS), where DNAm sites are examined for associations with PTB, can help shed light on the biological mechanisms linking the two. RESULTS: In an Asian cohort of 1019 infants (68 preterm, 951 full term), we examined and compared the associations between PTB and genome-wide DNAm profiles using both cord tissue (n = 1019) and cord blood (n = 332) samples on Infinium HumanMethylation450 arrays. PTB was significantly associated (P < 5.8e-7) with DNAm at 296 CpGs (209 genes) in the cord blood. Over 95% of these CpGs were replicated in other PTB/gestational age EWAS conducted in (cord) blood. This replication was apparent even across populations of different ethnic origin (Asians, Caucasians, and African Americans). More than a third of these 296 CpGs were replicated in at least 4 independent studies, thereby identifying a robust set of PTB-linked epigenetic signatures in cord blood. Interrogation of cord tissue in addition to cord blood provided novel insights into the epigenetic status of the neonates born preterm. Overall, 994 CpGs (608 genes, P < 3.7e-7) associated with PTB in cord tissue, of which only 10 of these CpGs were identified in the analysis using cord blood. Genes from cord tissue showed enrichment of molecular pathways related to fetal growth and development, while those from cord blood showed enrichment of immune response pathways. A substantial number of PTB-associated CpGs from both the birth tissues were also associated with gestational age. CONCLUSIONS: Our findings provide insights into the epigenetic landscape of neonates born preterm, and that its status is captured more comprehensively by interrogation of more than one neonatal tissue in tandem. Both these neonatal tissues are clinically relevant in their unique ways and require careful consideration in identification of biomarkers related to PTB and gestational age. TRIAL REGISTRATION: This birth cohort is a prospective observational study designed to study the developmental origins of health and disease, and was retrospectively registered on 1 July 2010 under the identifier NCT01174875 .


Assuntos
Ilhas de CpG , Metilação de DNA , Estudo de Associação Genômica Ampla/métodos , Nascimento Prematuro/genética , Ásia , Epigênese Genética , Feminino , Humanos , Recém-Nascido , Masculino , Nascimento Prematuro/etnologia , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA