RESUMO
The contamination of animal feed with aflatoxins is an ongoing and growing serious issue, particularly for livestock farmers in tropical and subtropical regions. Exposure of animals to an aflatoxin-contaminated diet impairs feed efficiency and increases susceptibility to diseases, resulting in mortality, feed waste, and increased production costs. They can also be excreted in milk and thus pose a significant human health risk. This systematic review and network meta-analysis aim to compare and identify the most effective intervention to alleviate the negative impact of aflatoxins on the important livestock sector, poultry production. Eligible studies on the efficacy of feed additives to mitigate the toxic effect of aflatoxins in poultry were retrieved from different databases. Additives were classified into three categories based on their mode of action and composition: organic binder, inorganic binder, and antioxidant. Moreover, alanine transaminase (ALT), a liver enzyme, was the primary indicator. Supplementing aflatoxin-contaminated feeds with different categories of additives significantly reduces serum ALT levels (p < 0.001) compared with birds fed only a contaminated diet. Inorganic binder (P-score 0.8615) was ranked to be the most efficient in terms of counteracting the toxic effect of aflatoxins, followed by antioxidant (P-score 0.6159) and organic binder (P-score 0.5018). These findings will have significant importance for farmers, veterinarians, and animal nutrition companies when deciding which type of additives to use for mitigating exposure to aflatoxins, thus improving food security and the livelihoods of smallholder farmers in developing countries.
Assuntos
Aflatoxinas , Humanos , Animais , Aflatoxinas/toxicidade , Aflatoxinas/análise , Antioxidantes/análise , Metanálise em Rede , Alanina Transaminase , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Ração Animal/análise , Aves DomésticasRESUMO
Fermented foods (ffs) and beverages are widely consumed in Southeast Asia (SEA) for their nutritional balance, flavor, and food security. They serve as vehicles for beneficial microorganisms performing a significant role in human health. However, there are still major challenges concerning the safety of ffs and beverages due to the presence of natural toxins. In this review, the common toxins found in traditional ffs in SEA are discussed with special reference to mycotoxins and plant toxins. Also, mitigation measures for preventing risks associated with their consumption are outlined. Ochratoxin, citrinin, aflatoxins were reported to be major mycotoxins present in SEA ffs. In addition, soybean-based ff food products were more vulnerable to mycotoxin contaminations. Common plant toxins recorded in ffs include cyanogenic glycosides, oxalates, phytates and saponins. Combined management strategies such as pre-harvest, harvest and post-harvest control and decontamination, through the integration of different control methods such as the use of clean seeds, biological control methods, fermentation, appropriate packaging systems, and controlled processing conditions are needed for the safe consumption of indigenous ffs in SEA.
RESUMO
Raw feed materials are often contaminated with mycotoxins, and co-occurrence of mycotoxins occurs frequently. A total of 250 samples i.e., rice bran and maize from Cambodia, Laos, Myanmar, and Thailand were analysed using state-of-the-art liquid chromatography-mass spectrometry (LC-MS/MS) for monitoring the occurrence of regulated, emerging, and masked mycotoxins. Seven regulated mycotoxins - aflatoxins, ochratoxin A, fumonisin B1, deoxynivalenol, zearalenone, HT-2, and T-2 toxin were detected as well as some emerging mycotoxins, such as beauvericin, enniatin type B, stachybotrylactam, sterigmatocystin, and masked mycotoxins, specifically zearalenone-14-glucoside, and zearalenone-16-glucoside. Aspergillus and Fusarium mycotoxins were the most prevalent compounds identified, especially aflatoxins and fumonisin B1 in 100% and 95% of samples, respectively. Of the emerging toxins, beauvericin and enniatin type B showed high occurrences, with more than 90% of rice bran and maize contaminated, whereas zearalenone-14-glucoside and zearalenone-16-glucoside were found in rice bran in the range of 56-60%. Regulated mycotoxins (DON and ZEN) were the most frequent mycotoxin combination with emerging mycotoxins (BEA and ENN type B) in rice bran and maize. This study indicates that mycotoxin occurrence and co-occurrence are common in raw feed materials, and it is critical to monitor mycotoxin levels in ASEAN's feedstuffs so that mitigation strategies can be developed and implemented.
Assuntos
Aflatoxinas , Micotoxinas , Oryza , Zearalenona , Aflatoxinas/análise , Sudeste Asiático , Cromatografia Líquida/métodos , Contaminação de Alimentos/análise , Glucosídeos , Micotoxinas Mascaradas , Micotoxinas/análise , Espectrometria de Massas em Tandem/métodos , Zea mays , Zearalenona/análiseRESUMO
Seven agronomic factors (crop season, farming system, harvest date, moisture, county, oat variety, and previous crop) were recorded for 202 oat crops grown across Ireland, and samples were analysed by LC-MS/MS for four major Fusarium mycotoxins: deoxynivalenol (DON), zearalenone (ZEN), T-2 toxin and HT-2 toxin. Type A trichothecenes were present in 62% of crops, with 7.4% exceeding European regulatory limits. DON (6.4%) and ZEN (9.9%) occurrences were relatively infrequent, though one and three samples were measured over their set limits, respectively. Overall, the type of farming system and the previous crop were the main factors identified as significantly influencing mycotoxin prevalence or concentration. Particularly, the adherence to an organic farming system and growing oats after a previous crop of grass were found to decrease contamination by type A trichothecenes. These are important findings and may provide valuable insights for many other types of cereal crops as Europe moves towards a much greater organic-based food system.
RESUMO
Several studies have reported a wide range of severe health effects as well as clinical signs, when livestock animals are exposed to high concentration of mycotoxins. However, little is known regarding health effects of mycotoxins at low levels. Thus, a long-term feeding trial (between May 2017 and December 2019) was used to evaluate the effect of low doses of mycotoxin mixtures on performance of broiler chickens fed a naturally contaminated diet. In total, 18 successive broiler performance trials were carried out during the study period, with approximately 2200 one-day-old Ross-308 chicks used for each trial. Feed samples given to birds were collected at the beginning of each trial and analysed for multi-mycotoxins using a validated LC-MS/MS method. Furthermore, parameters including feed intake, body weight and feed efficiency were recorded on a weekly basis. In total, 24 mycotoxins were detected in samples analysed with deoxynivalenol (DON), zearalenone (ZEN), fumonisins (FBs), apicidin, enniatins (ENNs), emodin and beauvericin (BEV), the most prevalent mycotoxins. Furthermore, significantly higher levels (however below EU guidance values) of DON, ZEN, FBs, BEV, ENNs and diacetoxyscirpenol (DAS) were detected in 6 of the 18 performance trials. A strong positive relationship was observed between broilers feed efficiency and DON (R2 = 0.85), FBs (R2 = 0.53), DAS (R2 = 0.86), ZEN (R2 = 0.92), ENNs (R2 = 0.60) and BEV (R2 = 0.73). Moreover, a three-way interaction regression model revealed that mixtures of ZEN, DON and FBs (p = 0.01, R2 = 0.84) and ZEN, DON and DAS (p = 0.001, R2 = 0.91) had a statistically significant interaction effect on the birds' feed efficiency. As farm animals are often exposed to low doses of mycotoxin mixtures (especially fusarium mycotoxins), a cumulative risk assessment in terms of measuring and mitigating against the economic, welfare and health impacts is needed for this group of compounds.
Assuntos
Ração Animal/microbiologia , Ração Animal/toxicidade , Galinhas/crescimento & desenvolvimento , Microbiologia de Alimentos , Fungos/metabolismo , Micotoxinas/toxicidade , Animais , Micotoxinas/análise , Medição de Risco , Fatores de TempoRESUMO
The contamination of feed with mycotoxins is a continuing feed quality and safety issue, leading to significant losses in livestock production and potential human health risks. Consequently, various methods have been developed to reduce the occurrence of mycotoxins in feed; however, feed supplementation with clay minerals or mineral adsorbents is the most prominent approach widely practiced by farmers and the feed industry. Due to a negatively charged and high surface area, pore volume, swelling ability, and high cation exchange capacity, mineral adsorbents including bentonite, zeolite, montmorillonite, and hydrated sodium calcium aluminosilicate can bind or adsorb mycotoxins to their interlayer spaces, external surface, and edges. Several studies have shown these substances to be partly or fully effective in counteracting toxic effects of mycotoxins in farm animals fed contaminated diets and thus are extensively used in livestock production to reduce the risk of mycotoxin exposure. Nevertheless, a considerable number of studies have indicated that these agents may also cause undesirable effects in farm animals. The current work aims to review published reports regarding adverse effects that may arise in farm animals (with a focus on pig and poultry) and potential interaction with veterinary substances and nutrients in feeds, when mineral adsorbents are utilized as a technological feed additive. Furthermore, results of in vitro toxicity studies of both natural and modified mineral adsorbents on different cell lines are reported. Supplementation of mycotoxin-contaminated feed with mineral adsorbents must be carefully considered by farmers and feed industry.
Assuntos
Aluminossilicato de Cálcio/efeitos adversos , Minerais/efeitos adversos , Micotoxinas/análise , Adsorção , Ração Animal/análise , Animais , Animais Domésticos , Aluminossilicato de Cálcio/antagonistas & inibidores , Células Cultivadas , Suplementos Nutricionais/efeitos adversos , Contaminação de Alimentos/análise , Inocuidade dos Alimentos/métodos , Minerais/antagonistas & inibidores , Aves Domésticas , SuínosRESUMO
Contamination of animal feed with multiple mycotoxins is an ongoing and growing issue, as over 60% of cereal crops worldwide have been shown to be contaminated with mycotoxins. The present study was carried out to assess the efficacy of commercial feed additives sold with multi-mycotoxin binding claims. Ten feed additives were obtained and categorised into three groups based on their main composition. Their capacity to simultaneously adsorb deoxynivalenol (DON), zearalenone (ZEN), fumonisin B1 (FB1), ochratoxin A (OTA), aflatoxin B1 (AFB1) and T-2 toxin was assessed and compared using an in vitro model designed to simulate the gastrointestinal tract of a monogastric animal. Results showed that only one product (a modified yeast cell wall) effectively adsorbed more than 50% of DON, ZEN, FB1, OTA, T-2 and AFB1, in the following order: AFB1 > ZEN > T-2 > DON > OTA > FB1. The remaining products were able to moderately bind AFB1 (44-58%) but had less, or in some cases, no effect on ZEN, FB1, OTA and T-2 binding (<35%). It is important for companies producing mycotoxin binders that their products undergo rigorous trials under the conditions which best mimic the environment that they must be active in. Claims on the binding efficiency should only be made when such data has been generated.