Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 959
Filtrar
1.
J Chem Phys ; 155(14): 144301, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34654315

RESUMO

We report the laser intensity dependence of multiply charged atomic ions (MCAIs) Arn+ with 2 ≤ n ≤ 8 from argon clusters in focused nanosecond laser fields at 532 nm. The laser field, in the range of 1011-1012 W/cm2, is insufficient for optical field ionization but is adequate for multiphoton ionization. The MCAI sections of the mass spectra for clusters containing 3700 and 26 000 atoms are dominated by Arn+ with 7 ≤ n ≤ 9, extending to Ar14+. While the distributions of the MCAIs remain largely constant throughout the intensity range of the laser, the abundance of Ar+ relative to the abundances of the MCAIs increases dramatically with increasing laser intensity. Consequently, exponential fittings of the yields result in a larger exponent for Ar+ than for MCAIs, and the exponents of MCAIs with 2 ≤ n ≤ 8 are similar, with only slight variations for different charge states. The width of the arrival time and, hence, the corresponding kinetic energy of Ar+ also increases with increasing laser intensities, while the width of the arrival time of MCAIs remains constant throughout the range of measurements. These results call for more detailed theoretical investigations in this regime of laser-matter interactions.

2.
Int Immunopharmacol ; 101(Pt B): 108216, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34634689

RESUMO

Herpes zoster (HZ) is a recurrent nerve tissue infection caused by the reactivation of varicella-zoster virus (VZV). At present, two vaccines, the live attenuated vaccine Zostavax™ and AS01B-adjuvanted recombinant subunit vaccine Shingrix™, are commercially available for HZ. The latter is superior to the former in terms of efficacy and duration of immunity in the elderly. In this study, we used glycoprotein E (gE) as an antigen, and investigated the effects of various adjuvants (MF59, MF59/CpG 2006, and MF59/QS-21) on the immune response of C57BL/6J mice to find an alternative adjuvant to AS01B-like adjuvant of liposome/QS-21/MPL. In addition to safety, the gE-specific antibody, IgG antibody subtype, and cytokine secretion by splenocytes, and cell-mediated immune responses were determined using ELISA and ELISPOT assays, respectively. Our results showed no significant effects on the body weight, temperature, or behavior of mice vaccinated with PBS or all adjuvanted vaccines. All adjuvanted vaccine groups showed significantly higher gE-specific IgG antibody levels than the gE-alone group on day 28 after the first vaccine dose. In addition, all adjuvants induced a remarkable increase in both IgG1 and IgG2b levels. However, MF59/QS-21 and MF59/CpG 2006 showed comparable capacities to those of liposome/QS-21/MPL in increasing the IgG2c levels, being superior to MF59. Further investigation revealed that MF59 only induced a limited increase in the levels of Th1 and Th2 cytokines, while MF59/QS-21, MF59/CpG 2006, and liposome/QS-21/MPL led to a significant increase in the secretion of interferon gamma (IFN-γ), IL-2, IL-4, and IL-10 and showed a Th1-biased immune response. Moreover, MF59/QS-21, MF59/CpG 2006, and liposome/QS-21/MPL adjuvanted vaccines resulted in comparable gE-specific IFN-γ + immune cell responses. These results suggest that the combination of MF59 with QS-21 or CpG 2006 may be a promising adjuvant candidate for subunit HZ vaccines. Further investigations are needed to illustrate their durability and efficacy in aged mice.

3.
Carcinogenesis ; 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34643214

RESUMO

Genetic alterations in the cell cycle pathway are common in head and neck squamous cell carcinoma (HNSCC). We identified four novel HNSCC susceptibility loci (CDKN1C rs452338, CDK4 rs2072052, E2F2 rs3820028 and E2F2 rs2075993) through a two-stage matched case-control study. There was a combined effect among the four single nucleotide polymorphisms (SNPs), as the number of risk genotypes increased, the risk of HNSCC displayed an increasing trend (Ptrend<0.001). And there were multiplicative interactions between rs452338 and rs2072052, rs2072052 and rs3820028, rs2072052 and rs2075993. Functional bioinformatics analysis and dual-luciferase reporter assay revealed that E2F2 rs2075993 T>C reduced the stability of E2F2 3'-UTR secondary structure and affected the binding of E2F2 to miR-940, which was up-regulated in HNSCC tumor tissues (P=2.9e-8) and was correlated with poor overall survival of HNSCC (HR=1.39, 95%CI=1.02-1.90). In vitro assays, we discovered that the expression of miR-940 was regulated by METTL3, and miR-940 promoted the proliferation, migration and invasion, and inhibited the senescence and autophagy of tumor cells. In terms of mechanism, compared with rs2075993 allele T, we found that the protective variant rs2075993 allele C interfered with the translational inhibition of E2F2 by miR-940, resulting in increased expression of E2F2 protein, which further reduced the proliferation, migration, invasion, and increased the senescence of tumor cells.

4.
Front Public Health ; 9: 708832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660511

RESUMO

The existing literature has yet to provide consistent evidence on the relationship between R&D investments and firm performance. The current study attempted to fill this gap in the literature by examining the effect of lag structure and the moderating role of financial governance, in terms of debt capital and ownership concentration, on the returns of R&D. Analyzing a sample of China's pharmaceutical firms from 2009 to 2018, we found that the effect of R&D upon growth begins in the second year after R&D spending and increases thereafter. There exists a vigorous debate about the choice between debt and ownership structure. To fill this gap, we proposed a three-way interactive effect. The results suggest that firms that invest heavily in R&D may achieve their highest performance when the use of debt capital and the extent of ownership concentration are both low. This study contributes to the R&D investments and financial governance literature by reconciling previous mixed evidence about the returns of R&D and the debt-equity choices on R&D investment decisions.

5.
Front Immunol ; 12: 704224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489953

RESUMO

The intercellular adhesion molecule-1 (ICAM-1), known as CD54, is a transmembrane cell surface glycoprotein that interacts with two integrins (i.e., LFA-1 and Mac-l) important for trans-endothelial migration of leukocytes. The level of ICAM-1 expression is upregulated in response to some inflammatory stimulations, including pathogen infection and proinflammatory cytokines. Yet, to date, our knowledge regarding the functional role of ICAM-1 in teleost fish remains largely unknown. In this study, we cloned and characterized the sequence of ICAM-1 in rainbow trout (Oncorhynchus mykiss) for the first time, which exhibited that the molecular features of ICAM-1 in fishes were relatively conserved compared with human ICAM-1. The transcriptional level of ICAM-1 was detected in 12 different tissues, and we found high expression of this gene in the head kidney, spleen, gills, skin, nose, and pharynx. Moreover, upon stimulation with infectious hematopoietic necrosis virus (IHNV), Flavobacterium columnare G4 (F. columnare), and Ichthyophthirius multifiliis (Ich) in rainbow trout, the morphological changes were observed in the skin and gills, and enhanced expression of ICAM-1 mRNA was detected both in the systemic and mucosal tissues. These results indicate that ICAM-1 may be implicated in the mucosal immune responses to viral, bacterial, and parasitic infections in teleost fish, meaning that ICAM-1 emerges as a master regulator of mucosal immune responses against pathogen infections in teleost fish.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34472846

RESUMO

Composites based on a shape-memory polymer doped with conductive particles are considered as soft actuators for artificial muscles and robots. Low-voltage actuating is expected to reduce equipment requirement and safety hazards, which requires a highly conductive particle content but weakens the reversible deformation. The spatial distribution of the conductive particle is key to decreasing the actuating voltage and maintaining the reversible deformation. Herein, an approach of fabricating a low-voltage actuator that can perform various biomimetic locomotions by spraying and hot pressing is reported. Carbon nanotubes (CNTs) are enriched inside the surface layer of poly(ethylene-co-vinyl acetate) (EVA) to form a high-density conductive network without degradation of the reversible deformation. The bilayer CNT/EVA actuator exhibits a reversible transformation of more than 10% even with 100 cycles, which requires an applied voltage of just 15 V. Taking advantage of the reprogrammability of the CNT/EVA actuator and reversible shift between the different shapes, different biomimetic locomotions (sample actuator, gripper, and walking robot) are demonstrated without any additional mechanical components. A scheme combining the electrical properties and the shape-memory effect provides a versatile strategy to fabricate low-voltage-actuated polymeric actuators, providing inspiration in the development of electrical soft actuators and biomimetic devices.

7.
Sci Rep ; 11(1): 18591, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545152

RESUMO

Environmental exposures interact with genetic factors has been thought to influence susceptibility of systemic lupus erythematosus (SLE) development. To evaluate the effects of environmental exposures on SLE, we conducted a population-based cohort study across Jiangsu Province, China, to examine the associations between the living environment including air and water pollution, population density, economic income level, etc. and the prevalence and mortality of hospitalized SLE (h-SLE) patients. A total of 2231 h-SLE patients were retrieved from a longitudinal SLE database collected by the Jiangsu Lupus Collaborative Group from 1999 to 2009. The results showed that: It existed regional differences on the prevalence of h-SLE patients in 96 administrative districts; The distribution of NO2 air concentration monitored by atmospheric remote sensors showed that three of the ultra-high-prevalence districts were located in the concentrated chemical industry emission area; h-SLE patient prevalence was positively correlated with the excessive levels of nitrogen in drinking water; The positive ratio of pericarditis and proteinuria was positively correlated with the prevalence of h-SLE patients and pollution not only induced a high h-SLE patient prevalence but also a higher mortality rate, which might be attributed to NOx pollution in the air and drinking water. In summary, our data suggested that NOx in air and drinking water may be one of the important predispositions of SLE, especially for patients with renal involvement.

8.
J Control Release ; 338: 633-643, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34509584

RESUMO

Broadly neutralizing antibodies (bNAbs) possess favorable safety, and passive immunization using these can prevent or control human immunodeficiency virus type 1 (HIV-1) infection. However, bNAbs generally used for monotherapy (IC80 > 5 µg/mL) have limited breadth and potency and neutralize only 70-90% of all HIV-1 strains. To address the need for broader coverage of the HIV-1 epidemic and enhance the ability of bNAbs to target HIV-1, we fused the single-chain variable antibody fragment (scFv) of bNAbs (PG9, PGT123, or NIH45-46) with full-length ibalizumab (iMab) in an scFv-monoclonal antibody tandem format to construct bispecific bNAbs (BibNAbs). Additionally, we described the feasibility of BibNAb gene delivery mediated by recombinant adeno-associated virus 8 (rAAV8) for generating long-term expression with a single injection as opposed to short-term passive immunization requiring continuous injections. Our results showed that the expressed BibNAbs targeting two distinct epitopes exhibited neutralizing activity against 20 HIV-1 pseudoviruses in vitro. After injecting a single rAAV8 vector, the expression and neutralizing activity of the BibNAbs in serum were sustained for 24 weeks. To the best of our knowledge, very few studies have been published on BibNAb gene delivery using rAAV8 vectors against HIV-1. BibNAb gene delivery using rAAV8 vectors may be promising for passive immunization against HIV-1 infection.

9.
J Mol Neurosci ; 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34570360

RESUMO

Using correlation analysis to study the potential connection between brain genetics and imaging has become an effective method to understand neurodegenerative diseases. Sparse canonical correlation analysis (SCCA) makes it possible to study high-dimensional genetic information. The traditional SCCA methods can only process single-modal genetic and image data, which to some extent weaken the close connection of the brain's biological network. In some recently proposed multimodal SCCA methods, due to the limitations of penalty items, the pre-processed data needs to be further filtered to make the dimensions uniform, which may destroy the potential association of data in the same modal. In this research, in order to combine data between different modalities and to ensure that the chain relationship or graph network relationship within the same modality will not be destroyed, the original generalized fused lasso penalty was replaced with the fused pairwise group lasso (FGL) and the graph-guided pairwise group lasso (GGL) based on the method of joint sparse canonical correlation analysis (JSCCA). We used prior knowledge to construct a supervised bivariate learning model and use linear regression to select quantitative traits (QTs) of images that are strongly correlated with the Mini-mental State Examination (MMSE) scores. Compared with FGL-SCCA, the model we constructed obtained a higher gene-ROI correlation coefficient and identified more significant biomarkers, providing a theoretical basis for further understanding the complex pathology of neurodegenerative diseases.

10.
Arthritis Res Ther ; 23(1): 250, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34587995

RESUMO

OBJECTIVE: Patients with autoimmune diseases often present with olfactory impairment. The aim of the study was to assess the olfactory functions of patients with primary Sjögren's syndrome and to correlate these findings with their disease activity. METHODS: Fifty-two patients with primary SS and 52 sex- and age-matched healthy control subjects were included. All of them underwent clinical and laboratory examination. Olfactory functions were evaluated using olfactory function assessment by computerized testing including the three stages of smell: threshold, identification, and memory of the different odors. RESULTS: All the olfactory scores (olfactory threshold, identification, and memory) in patients with pSS were significantly decreased than the control group (all P < 0.01). Patients had higher proportion of anosmia (13.5% vs 0%) and hyposmia (19.2% vs 11.5%) than controls (χ2 = 10.526, P < 0.01). Multivariable regression analysis revealed that ESSDAI and the symptoms of dryness, fatigue, and limb pain had negative influence on olfactory function (adjusted R2 = 0.381, 0.387, 0.513, and 0.614, respectively). ESSPRI showed significantly negative association with olfactory threshold, identification, memory, and total scores. Olfactory identification and memory scores were decreased in pSS patients with thyroid dysfunction or hypocomplementemia (P < 0.05). Smell threshold scores were decreased in pSS patients with anti-SSA antibody or anti-nuclear antibody compared with those without those autoantibodies (P < 0.01). CONCLUSION: Our findings indicate that olfactory functions are impaired in pSS patients. There was a close correlation between olfactory dysfunction and disease severity and immunological abnormalities. Immune and systemic inflammation dysregulation might play a role in the mechanism of this defect.

11.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4531-4540, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34581059

RESUMO

This study aims to explore underlying mechanism of Lonicerae Japonicae Flos(LJF) in protecting rats against acute alcoholic liver injury(ALI) based on mitogen-activated protein kinase(MAPK) pathway. First, the targets of LJF in preventing ALI were predicted by network pharmacology and the component-target-pathway network was constructed, so that the key targets of LJF components acting on MAPK pathway were screened. Second, male SD rats were randomized into the control(KB) group, model(MX) group, positive(YX) group, and LJF high-(GJ), medium-(ZJ), and low-(DJ) dose groups. Each administration group was given(ig) corresponding drugs for 7 days and KB group and MX group received(ig) equal volume of distilled water every day. Except for KB group, rats were given Chinese spirit(56%, 3 days) for ALI modeling. The levels of aspartate transaminase(AST), alanine transaminase(ALT), interleukin-6(IL6) and tumor necrosis factor-α(TNF-α) in serum and malondialdehyde(MDA), glutathione(GSH), superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) in liver tissue of rats in each group were detected. Furthermore, we employed quantitative real-time PCR(qRT-PCR) to probe the effects of LJF on the key targets of MAPK pathway in ALI rats. A total of 28 active components of LJF were screened from TCMSP database, and 317 intersected with ALI-related targets. According to Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis, the 317 targets involved 226 pathways, which were mainly liver disease, inflammation, immunity, apoptosis and other related pathways. According to the MAPK pathway-target-active component network, the key active components of LJF, such as chlorogenic acid, hederagenol, and hyperoside, acted on 25 key targets of MAPK pathway. The results of in vivo experiments showed decreased levels of AST, ALT, and MDA in DJ, ZJ, and GJ groups(P<0.01 or P<0.05), reduced levels of IL6 in DJ and GJ groups(P<0.01 or P<0.05), and improved levels of SOD and GSH in ZJ and GJ groups(P<0.01 or P<0.05). The results of qRT-PCR demonstrated that the expression levels of mitogen-activated protein kinase kinase 4(MAPK2 K4) and mitogen-activated protein kinase 3(MAPK3) were decreased in DJ, ZJ, and GJ groups(P<0.01). The network pharmacology and experimental verification showed that the active components in LJF can reduce the inflammatory factor level and enhance the activities of SOD and GSH-Px by inhibiting the expression of key targets of MAPK pathway, thus alleviating and preventing liver damage caused by alcohol.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatias , Animais , Ácido Clorogênico , Fígado , Masculino , Ratos , Ratos Sprague-Dawley
13.
Fish Shellfish Immunol ; 118: 385-395, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34563671

RESUMO

CD79a and CD79b heterodimers are important components that consist of B cell receptor compound, which play a crucial role in transduction activation signal of the antigen binding BCR, and B cell development and antibody production. In order to investigate the characters and potential functions of CD79a and CD79b in rainbow trout (Oncorhynchus mykiss), we firstly cloned and analyzed the expression of CD79a and CD79b and found that the cDNA sequences of CD79a and CD79b both contained open reading frame of 711 and 645 bp in length for encoding the protein of 237 and 215 amino acid residues, respectively. The predicted amino acid sequences from trout were highly conserved with those of other teleost fishes in structure. Phylogenetic tree was constructed to analyze the evolutionary relationship between the trout and other known species, the result indicated that CD79a and CD79b of trout clustered at high bootstrap values with Salmo salar. Moreover, three trout infection models with F. columnare G4, I. multifiliis and infectious hematopoietic necrosis virus (IHNV) were constructed, which resulted in morphological changes and serious lesions in skin and gills. Importantly, the high expression of CD79a and CD79b occurred in skin, gills, and followed by head kidney in response to bacterial, parasitic, and viral infection, as its expression was closely related to that of Igs. Our findings indicated that CD79a and CD79b play vital roles in both systemic and mucosal immune responses of rainbow trout during bacterial, parasitic, and viral infection, which will contribute to explore the roles of CD79 subunits in B cell signaling during ontogeny and disease.

14.
Cell Death Dis ; 12(9): 829, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480018

RESUMO

Recent studies indicate that Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) can function as the signal of pattern recognition receptors, which play a pivotal role in the pathogenesis of the autoimmune disease. Systemic lupus erythematosus (SLE) is a classic autoimmune disease. Previous reports mainly focused on the potential role of TLRs in regulating the development of SLE, but little is known about the role of CLRs in the progression of SLE. Our previous studies showed that the inflammation-mediated accumulation of myeloid-derived suppressor cells (MDSCs) including granulocytic (G-MDSCs) and monocytic (M-MDSCs) participated in the pathogenesis of lupus. Mice deficient in Card9 (the downstream molecule of CLRs) were more susceptible to colitis-associated cancer via promoting the expansion of MDSCs. Whether the abnormal activation of CLRs regulates the expansion of MDSCs to participate in the pathogenesis of lupus remains unknown. In the present study, the expressions of CLRs were examined in both SLE patients and mouse models, revealing the expression of Dectin3 was positively correlated with SLEDAI. Dectin3 deficiency retarded the lupus-like disease by regulating the expansion and function of MDSCs. The mechanistic analysis revealed that Dectin3 deficiency promoted FoxO1-mediated apoptosis of MDSCs. Syk-Akt1-mediated nuclear transfer of FoxO1 increased in Dectin3-deficient MDSCs. Notedly, the accumulation of M-MDSCs mainly decreased in Dectin3-/- lupus mice, and the nuclear transfer of FoxO1 negatively correlated with the expression of LOX-1 on M-MDSCs. The silencing of FoxO1 expression in Dectin3-/- mice promoted the expansion of LOX-1+ M-MDSCs in vivo, and LOX-1+ M-MDSCs increased the differentiation of Th17 cells. Both LOX-1 expression on M-MDSCs and Dectin3 expression on MDSCs increased in patients with SLE. These data indicated that increased LOX-1+ M-MDSCs were related to the exacerbation of SLE development and might be potential target cells for the treatment of SLE.

15.
Pain Physician ; 24(6): E811-E819, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34554701

RESUMO

BACKGROUND: Studies that focus on percutaneous full-endoscopic anterior transcorporeal cervical discectomy (PEATCD) have rarely been reported. Therefore, the available data on the surgical design of PEATCD and related clinical outcomes are very limited. OBJECTIVES: To design a surgical plan for PEATCD and to evaluate its clinical efficacy in clinical application. STUDY DESIGN: A retrospective cohort study. SETTING: A center for spine surgery, rehabilitation department and pain medicine. METHODS: Based on the size and precise location of the disc protrusions on magnetic resonance imaging (MRI), the diameter and direction of the bone channel were designed to make a surgical plan for PEATCD. A total of 26 patients with central/paracentral cervical disc herniation (CDH) who underwent PEATCD through the designed surgical plan from October 2015 to September 2016 were enrolled in the retrospective study. Clinical outcome evaluations included Visual Analog Scale (VAS) scores, Japanese Orthopedic Association (JOA) scores, and the modified Macnab criteria. Radiologic follow-up included cervical computerized tomography (CT) and MRI evaluations. RESULTS: The diameter of the designed bone channel was about 7.5 mm, and the direction was from the upper edge of the lower endplate obliquely toward the disc protrusion. Through the designed surgical plan, 26 cases of discectomy were successfully completed. The average operation time was 91.50 ± 16.80 min, and the average hospital stay was 4.07 ± 0.84 days. All patients were followed for an average of 19.61 ± 4.04 months. The postoperative VAS and JOA scores were significantly improved compared with the preoperative scores (P < 0.0001). Clinical efficacy at the final follow-up was evaluated by the modified Macnab criteria, and the excellent and good rate was 92.31%. Postoperative MRI showed that the disc protrusion was completely removed, and CT showed no collapse of the vertebral body. LIMITATIONS: This study has several limitations, including the lack of a control group, the small sample size, and the unavoidable nature of the single-center study design. CONCLUSIONS: Based on the size and location of the disc protrusion on MRI, the diameter and direction of the bone channel are designed, which is conducive to have enough space under the full-endoscopic field of view to completely expose and remove the disc protrusion, to avoid residuals, and to ensure that PEATCD achieves good therapeutic results. TRIAL REGISTRATION: The study was registered at Chinese Clinical Trial Registry (ChiCTR1900027820).

16.
Blood Adv ; 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559203

RESUMO

Hyperhomocysteinemia (HHcy) is associated with an exaggerated platelet thrombotic response at sites of vascular injury. Here, a human medical examination report showed that elevated human plasma Hcy levels were positively correlated with enhanced blood coagulation and platelet activity, suggesting that humans with HHcy are more prone to thrombus formation at the sites of vascular injury. Accordingly, we observed accelerated platelet activation, primary hemostasis, and thrombus formation both in acute and chronic HHcy ApoE-/- mice. Upon Hcy administration in C57BL/6J mice, platelet aggregation, spreading, and clot retraction were markedly promoted. More importantly, homocysteine (Hcy) increased the affinity of platelet integrin αIIbß3 with ligands and enhanced integrin outside-in signaling by promoting membrane phosphatidylserine (PS) exposure in vitro. Mechanistically, lipidomics analysis showed that lysophosphatidylcholines were the primary metabolites leading to clustering of HHcy-stimulated platelets. Cytosolic phospholipase A2 (cPLA2) activity and autotaxin (ATX, a secreted lysophospholipase D) secretion were upregulated by Hcy, leading to membrane phospholipid hydrolysis and PS exposure. Moreover, secreted ATX directly interacted with integrin ß3. Inhibitors of cPLA2 and ATX activity blocked integrin αIIbß3 outside-in signaling and thrombosis in HHcy ApoE-/- mice. This study identifies a novel mechanism by which HHcy promotes platelet membrane phospholipid catabolism and extracellular ATX secretion to activate integrin outside-in signaling, consequently to exaggerate thrombosis. This study reveals an innovative approach to treat HHcy-related thrombotic diseases.

17.
J Phys Chem Lett ; : 9644-9650, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586826

RESUMO

We report electron diffraction of cationic argon nanoclusters embedded in superfluid helium droplets. Superfluid helium droplets are first doped with neutral argon atoms to form nanoclusters, and then the doped droplets are ionized by electrons. The much lower ionization energy of argon ensures that the positive charge resides on the Ar nanocluster. Using different stagnation temperatures and therefore droplets with different sizes, we have been able to preferentially form a small ionic cluster containing 2-4 Ar atoms and a larger cluster containing 7-11 atoms. The fitting results of the diffraction profiles agree with structures reported from theoretical calculations, containing a cationic trimer core with the remaining atoms largely neutral. This work testifies to the feasibility of performing electron diffraction from ionic species embedded in superfluid helium droplets, dispelling the concern over the particle density in the diffraction region. However, the large number of neutral helium atoms surrounding the cationic nanoclusters poses a challenge for the detection of the helium solvation layer, and the detection of which awaits further technological improvements.

18.
Nanomicro Lett ; 13(1): 162, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34338928

RESUMO

HIGHLIGHTS: The cationic waterborne polyurethanes microspheres with Diels-Alder bonds were synthesized for the first time. The electrostatic attraction not only endows the composite with segregated structure to gain high electromagnetic-interference shielding effectiveness, but also greatly enhances mechanical properties. Efficient healing property was realized under heating environment. It is still challenging for conductive polymer composite-based electromagnetic interference (EMI) shielding materials to achieve long-term stability while maintaining high EMI shielding effectiveness (EMI SE), especially undergoing external mechanical stimuli, such as scratches or large deformations. Herein, an electrostatic assembly strategy is adopted to design a healable and segregated carbon nanotube (CNT)/graphene oxide (GO)/polyurethane (PU) composite with excellent and reliable EMI SE, even bearing complex mechanical condition. The negatively charged CNT/GO hybrid is facilely adsorbed on the surface of positively charged PU microsphere to motivate formation of segregated conductive networks in CNT/GO/PU composite, establishing a high EMI SE of 52.7 dB at only 10 wt% CNT/GO loading. The Diels-Alder bonds in PU microsphere endow the CNT/GO/PU composite suffering three cutting/healing cycles with EMI SE retention up to 90%. Additionally, the electrostatic attraction between CNT/GO hybrid and PU microsphere helps to strong interfacial bonding in the composite, resulting in high tensile strength of 43.1 MPa and elongation at break of 626%. The healing efficiency of elongation at break achieves 95% when the composite endured three cutting/healing cycles. This work demonstrates a novel strategy for developing segregated EMI shielding composite with healable features and excellent mechanical performance and shows great potential in the durable and high precision electrical instruments.

19.
J Mol Neurosci ; 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410569

RESUMO

Imaging genetics reveals the connection between microscopic genetics and macroscopic imaging, enabling the identification of disease biomarkers. In this work, we make full use of prior knowledge that has significant reference value for investigating the correlation between the brain and genetics to explore more biologically substantial biomarkers. In this paper, we propose joint-connectivity-based sparse nonnegative matrix factorization (JCB-SNMF). The algorithm simultaneously projects structural magnetic resonance imaging (sMRI), single-nucleotide polymorphism sites (SNPs), and gene expression data onto a common feature space, where heterogeneous variables with large coefficients in the same projection direction form a common module. In addition, the connectivity information for each region of the brain and genetic data are added as prior knowledge to identify regions of interest (ROIs), SNPs, and gene-related risks related to Alzheimer's disease (AD) patients. GraphNet regularization increases the anti-noise performance of the algorithm and the biological interpretability of the results. The simulation results show that compared with other NMF-based algorithms (JNMF, JSNMNMF), JCB-SNMF has better anti-noise performance and can identify and predict biomarkers closely related to AD from significant modules. By constructing a protein-protein interaction (PPI) network, we identified SF3B1, RPS20, and RBM14 as potential biomarkers of AD. We also found some significant SNP-ROI and gene-ROI pairs. Among them, two SNPs rs4472239 and rs11918049 and three genes KLHL8, ZC3H11A, and OSGEPL1 may have effects on the gray matter volume of multiple brain regions. This model provides a new way to further integrate multimodal impact genetic data to identify complex disease association patterns.

20.
Cell Mol Biol Lett ; 26(1): 37, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399682

RESUMO

BACKGROUND: Iron overload can promote the development of osteoporosis by inducing apoptosis in osteoblasts. However, the mechanism by which miRNAs regulate apoptosis in osteoblasts under iron overload has not been elucidated. METHOD: The miRNA expression profile in MC3T3-E1 cells under iron overload was detected by next generation sequencing. qRT-PCR was used to determine the expression of miR-3074-5p in MC3T3-E1 cells under iron overload. The proliferation of MC3T3-E1 cells was tested using CCK-8 assays, and apoptosis was measured using flow cytometry. The miRanda and TargetScan databases were used to predict the target genes of miR-3074-5p. Interaction between miR-3074-5p and the potential target gene was validated by qRT-PCR, luciferase reporter assay and western blotting. RESULTS: We found that iron overload decreased the cell viability and induced apoptosis of MC3T3-E1 cells. The results of next generation sequencing analysis showed that miR-3074-5p expression was significantly increased in MC3T3-E1 cells under iron overload conditions, which was confirmed by further experiments. The inhibition of miR-3074-5p attenuated the apoptosis of iron-overloaded MC3T3-E1 cells. Furthermore, the expression of Smad4 was decreased and was inversely correlated with miR-3074-5p expression, and overexpression of Smad4 partially reversed the viability inhibition of iron-overloaded MC3T3-E1 cells by relieving the suppression of ERK, AKT, and Stat3 phosphorylation, suggesting its regulatory role in the viability inhibition of iron-overloaded MC3T3-E1 cells. The luciferase reporter assay results showed that Smad4 was the target gene of miR-3074-5p. CONCLUSION: miR-3074-5p functions as an apoptosis promoter in iron-overloaded MC3T3-E1 cells by directly targeting Smad4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...