Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 817
Filtrar
1.
Int J Mol Med ; 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31922237

RESUMO

Age­related hearing loss, also termed central presbycusis, is a progressive neurodegenerative disease; it is a devastating disorder that severely affects the quality of life of elderly individuals. Substantial evidence has indicated that oxidative stress and associated protein folding dysfunction have a marked influence on neurodegenerative diseases. In this study, we aimed to cells to investigate whether metformin protects against age­related pathologies and to elucidate the underlying mechanisms; specifically, we focused on the role of unfolded protein response (UPR) via the AMPK/ERK1/2 signaling pathways. For this purpose, the biguanide compound, metformin, a medication widely used in the treatment of type 2 diabetes, was administered to rats in a model of mimetic aging. In addition, senescent PC12 were treated with metformin. Although it has been well established that UPR signaling is activated in response to cellular stress and is associated with the pathogenesis of neuronal deterioration, the detailed functions of the UPR in the auditory cortex remain unclear. We found that metformin treatment markedly affected the UPR and the AMPK/ERK1/2 signaling pathway, and maintained the auditory brainstem response (ABR) threshold during the aging process. The results indicated that the regulation of the UPR and AMPK/ERK1/2 signaling pathway by metformin significantly attenuated hearing loss, cell apoptosis and age­related neurodegeneration. Reversing these harmful effects through the use of metformin suggests its involvement in restoring the antioxidant status and protein homeostasis related to the underlying pathology of presbycusis. The findings of this study may provide a better approach for the treatment of age­related neurodegeneration diseases.

2.
J Appl Clin Med Phys ; 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31925999

RESUMO

PURPOSE: To demonstrate a specific skin dose limiting technique in radiotherapy treatment planning for esophageal cancer and carry out a comparative analysis combining with clinical cases. MATERIAL AND METHODS: Thirty patients with cervical and upper thoracic esophageal carcinoma previously treated in our institution were selected. A treatment plan had been finished previously according to the planning parameters directives from physician and delivered for each patient. In this study, we copied the previously delivered plans in radiotherapy treatment planning system and converted a low dose level (usually 5Gy) to a skin dose limiting structure (SDLS), then we set the objective functions of the SDLS in the Pinnacle Inverse Planning module and re-optimize the plans to reduce the skin doses. Finally, we compared the dose distribution and other parameters of target volume and organs at risk (OARs) between the old plans and the new plans. RESULTS: There was no significant difference in most of OARs sparing. However, for all plans, the maximum dose to the SDLS decreased from 6145.90 ± 416.96 cGy to 5562.09 ± 616.69 cGy with maximum difference of 1361.30 cGy (P < 0.05), the percentage volume of 40Gy received by the SDLS decreased from (10.20 ± 6.36)% to (5.46 ± 4084)% with maximum difference of 9.89% (P < 0.05). For the target volume, there was no significant difference in the average dose and maximum dose, the approximate minimum dose to the target volume decreased from 5711.28 ± 164.61 cGy to 5584.93 ± 157.70 cGy (P < 0.05), the conformal index and homogeneity index of the target volume were hardly changed. CONCLUSION: In radiotherapy treatment planning for esophageal cancer patients, the skin dose can be significantly reduced using the skin dose limiting technique, and the impact on the dose to target volume and OARs is little, this technique can be used in most radiotherapy treatment planning.

3.
Redox Biol ; 28: 101364, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31731101

RESUMO

Inflammation is a self-defense response to protect individuals from infection and tissue damage, but excessive or persistent inflammation can have adverse effects on cell survival. Many individuals become especially susceptible to chronic-inflammation-induced sensorineural hearing loss as they age, but the intrinsic molecular mechanism behind aging individuals' increased risk of hearing loss remains unclear. FoxG1 (forkhead box transcription factor G1) is a key transcription factor that plays important roles in hair cell survival through the regulation of mitochondrial function, but how the function of FoxG1 changes during aging and under inflammatory conditions is unknown. In this study, we first found that FoxG1 expression and autophagy both increased gradually in the low concentration lipopolysaccharide (LPS)-induced inflammation model, while after high concentration of LPS treatment both FoxG1 expression and autophagy levels decreased as the concentration of LPS increased. We then used siRNA to downregulate Foxg1 expression in hair cell-like OC-1 cells and found that cell death and apoptosis were significantly increased after LPS injury. Furthermore, we used d-galactose (D-gal) to create an aging model with hair cell-like OC-1 cells and cochlear explant cultures in vitro and found that the expression of Foxg1 and the level of autophagy were both decreased after D-gal and LPS co-treatment. Lastly, we knocked down the expression of Foxg1 under aged inflammation conditions and found increased numbers of dead and apoptotic cells. Together these results suggest that FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways.

4.
J Phys Chem Lett ; : 724-729, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31884792

RESUMO

We report electron diffraction of pyrene nanoclusters embedded in superfluid helium droplets. Using a least-squares fitting procedure, we have been able to separate the contribution of helium from those of the pyrene nanoclusters and determine the most likely structures for dimers and trimers. We confirm that pyrene dimers form a parallel double-layer structure with an interlayer distance of 3.5 Šand suggest that pyrene trimers form a sandwich structure but that the molecular planes are not completely parallel. The relative contributions of the dimers and trimers are ∼6:1. This work is an extension of our effort of solving structures of biological molecules using serial single-molecule electron diffraction imaging. The success of electron diffraction from an all-light-atom sample embedded in helium droplets offers reassuring evidence of the feasibility of this approach.

5.
J Infect ; 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31812703

RESUMO

OBJECTIVE: Viral fitness plays an important role in HIV-1 evolution, transmission and pathogenesis. However, how mutations accumulated during early infection affect viral fitness has not been well studied. METHODS: We generated paired infectious molecular clones (IMCs) for transmitted/founder (T/F) and 6-month (6-mo) viruses post infection from 10 infected individuals to investigate the impact of accumulated mutations on viral fitness by comparing 6-mo viruses to their cognate T/F viruses. RESULTS: We found that all ten 6-mo viruses were less fit than their cognate T/F viruses. Moreover, the fitness losses of the 6-mo viruses correlated with the decrease in viral loads from the peak of viremia. CONCLUSION: These results show that the mutations accumulated during half a year post infection collectively reduce viral fitness and thereby contribute to lowering viral loads.

6.
J Hepatol ; 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31813573

RESUMO

BACKGROUND & AIMS: C-C motif chemokine receptor 2 (CCR2) has been recognized as a promising target for the treatment of liver fibrosis. PC3-secreted microprotein (PSMP)/microseminoprotein (MSMP) is a novel chemotactic cytokine and its receptor is CCR2. In the present study we investigated the expression and role of PSMP in liver fibrosis/cirrhosis. METHODS: PSMP expression was studied in patients with fibrosis/cirrhosis and in 3 murine models of liver fibrosis, including mice treated with carbon tetrachloride (CCl4), bile-duct ligation, or a 5-diethoxycarbonyl-1,4-dihydrocollidine diet. The role of PSMP was evaluated in Psmp-/- mice and after treatment with a PSMP antibody in wild-type mice. The direct effects of PSMP on macrophages and hepatic stellate cells were studied in vitro. RESULTS: In this study, we found that PSMP was highly expressed in fibrotic/cirrhotic tissues from patients with different etiologies of liver disease and in the 3 experimental mouse models of fibrosis. Damage-associated molecular pattern molecules HMGB-1 and IL-33 induced hepatocytes to produce PSMP. PSMP deficiency resulted in a marked amelioration of hepatic injury and fibrosis. In CCl4-induced hepatic injury, the infiltration of macrophages and CCR2+ monocytes into the liver was significantly decreased in Psmp-/- mice. Consistent with the decreased levels of intrahepatic macrophages, proinflammatory cytokines were significantly reduced. Moreover, adeno-associated virus-8 vectors successfully overexpressing human PSMP in Psmp-/- mouse livers could reverse the attenuation of liver injury and fibrosis induced by CCl4 in a CCR2-dependent manner. Treatment with a specific PSMP-neutralizing antibody, 3D5, prevented liver injury and fibrosis induced by CCl4 in mice. At the cellular level, PSMP directly promoted M1 polarization of macrophages and activation of LX-2 cells. CONCLUSION: PSMP enhances liver fibrosis through its receptor, CCR2. PSMP is a potentially attractive therapeutic target for the treatment of patients with liver fibrosis. LAY SUMMARY: Our present study identifies the essential role of the protein PSMP for the development and progression of liver fibrosis in humans and mice. PSMP promotes liver fibrosis through inflammatory macrophage infiltration, polarization and production of proinflammatory cytokines, as well as direct activation of hepatic stellate cells via its receptor CCR2. A PSMP antibody can significantly reduce liver fibrosis development in vivo. These findings indicate that PSMP is a potential therapeutic target and its antibody is a potential therapeutic agent for the treatment of liver fibrosis.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31793169

RESUMO

Nitrogen-doped polycyclic aromatic hydrocarbons (aza-PAHs) have found broad applications in material science. Herein, a modular electrochemical synthesis of aza-PAHs was developed via a rhodium-catalyzed cascade C-H activation and alkyne annulations. A multifunctional N-methoxylimidamide ensured high chemo- and regioselectivities. The isolation of two key rhodacyclic intermediates allowed to delineate the exact order of three C-H activation events. In addition, the metalaelectro-catalyzed multiple C-H transformation was characterized by an outstanding functional group tolerance, including highly reactive iodo and azido groups.

8.
Curr Microbiol ; 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31834431

RESUMO

A salt-tolerant microbe strain JYZ-SD2 was investigated to develop biological soil amendments to stimulate salix growth and acclimation in costal salt-affected soils. The salt tolerance mechanism of strain JYZ-SD2 was investigated by detecting the salt-tolerant growth characteristics, biofilm formation, ion distribution, secondary metabolites, and zymogram profiling. The strain was identified by physiological and biochemical characteristics (Biolog), 16S rDNA sequencing, and cry1/7/9 gene expressing. With increasing of NaCl concentration, strain JYZ-SD2 adapted to the increased osmotic pressure by prolonging the retardation period, slowing down the growth rate of the logarithmic phase, increasing spo0A gene expression, increasing biofilm formation, reducing Na+ uptake, and changing the expression of metabolites and intracellular soluble proteins. The results showed that strain JYZ-SD2 could be assigned to Bacillus cereus.

9.
Neural Plast ; 2019: 9765276, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827501

RESUMO

Auditory neuropathy spectrum disorder (ANSD), also called auditory neuropathy (AN), is a unique type of prelingual hearing impairment. Up to 10% of deaf infants and children are affected by this disease. Mutation of the OTOF gene which encodes otoferlin is the common cause of congenital nonsyndromic ANSD. To date, over 110 mutations have been identified in the OTOF gene according to the Human Gene Mutation Database (HGMD). Here, next-generation sequencing (NGS) revealed that the compound heterozygous mutations c.4748G>A/c.2523+1G>T and c.5248G>C/c.5098G>C of the OTOF gene were present in two Chinese ANSD patients. Each patient had a known pathogenic mutation (c.4748G>A or c.5098G>C) and a novel mutation (c.2523+1G>T or c.5248G>C). Comparative amino acid sequence analysis across different species revealed that the residues at these novel mutation sites are evolutionarily highly conservative. This indicated that the novel mutations were possible causes of the disorder in the patients. Our findings extend the OTOF mutation spectrum and further confirm the role of the OTOF gene in ANSD.

10.
Oxid Med Cell Longev ; 2019: 1253289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885769

RESUMO

The study was aimed at investigating the effects of L-cystathionine on vascular endothelial cell apoptosis and its mechanisms. Cultured human umbilical vein endothelial cells (HUVECs) were used in the study. Apoptosis of vascular endothelial cells was induced by homocysteine. Apoptosis, mitochondrial superoxide anion, mitochondrial membrane potential, mitochondrial permeability transition pore (MPTP) opening, and caspase-9 and caspase-3 activities were examined. Expression of Bax, Bcl-2, and cleaved caspase-3 was tested and BTSA1, a Bax agonist, and HUVEC Bax overexpression was used in the study. Results showed that homocysteine obviously induced the apoptosis of HUVECs, and this effect was significantly attenuated by the pretreatment with L-cystathionine. Furthermore, L-cystathionine decreased the production of mitochondrial superoxide anion and the expression of Bax and restrained its translocation to mitochondria, increased mitochondrial membrane potential, inhibited mitochondrial permeability transition pore (MPTP) opening, suppressed the leakage of cytochrome c from mitochondria into the cytoplasm, and downregulated activities of caspase-9 and caspase-3. However, BTSA1, a Bax agonist, or Bax overexpression successfully abolished the inhibitory effect of L-cystathionine on Hcy-induced MPTP opening, caspase-9 and caspase-3 activation, and HUVEC apoptosis. Taken together, our results indicated that L-cystathionine could protect against homocysteine-induced mitochondria-dependent apoptosis of HUVECs.

11.
Anal Chem ; 91(23): 14936-14942, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31670502

RESUMO

Förster resonance energy transfer (FRET) is a well-established method for studying macromolecular interactions and conformational changes within proteins. Such a method normally uses fluorescent proteins or chemical-labeling methods which are often only accessible to surface-exposed residues and risk-disturbing target protein structures. Here, we demonstrate that the genetic incorporation of a synthetic fluorescent amino acid, L-(7-hydroxycoumarin-4-yl) ethylglycine (Cou) and natural endogenous fluorophore Tryptophan (Trp) residues of a protein could serve as an efficient FRET pair to monitor protein interactions, using the signaling transducer ß-arrestin-1 as a model system. We used this technology to record the dynamic spectra in both binding and competition experiments of ß-arrestin-1, the contribution of each specific phosphate in ternary complex formation, in a rapid and efficient manner. The determined Kd value for the association between the active arrestin and Fab30 is 0.68 µM in the three-component interaction system. Moreover, we were able to determine the contributions of the site 3 phospho-site and the site 6 phospho-site binding, each contributing to the high affinity ternary complex assembly as 2.7 fold and 15.5 fold, respectively, which were never determined before. These results thus highlighted the potential usage of this new method in measurement of the allosteric-induced enhanced affinity with small amount proteins and in a fast manner and in a complex system. Collectively, our newly developed Trp:Cou FRET system based on genetic expansion technology has extended the molecular toolboxes available for biochemical and structural biology studies.

12.
Emerg Microbes Infect ; 8(1): 1584-1592, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31682199

RESUMO

The genetic and/or antigenic differences between street rabies virus (RABV) and vaccine strains could potentially affect effectiveness of rabies vaccines. As such, it is important to continue monitoring the glycoprotein (G) of the street isolates. All RABVG sequences in public database were retrieved and analysed. Using a pseudovirus system, we investigated 99 naturally occurring mutants for their reactivities to well-characterized neutralizing monoclonal antibodies (mAbs) and vaccine-induced antisera. A divergence in G sequences was found between vaccine strains and recent street isolates, with mutants demonstrating resistance to neutralizing mAbs and vaccine-induced antibodies. Moreover, antigenic variants were observed in a wide range of animal hosts and geographic locations, with most of them emerging since 2010. As the number of antigenic variants has increased in recent years, close monitoring on street isolates should be strengthened.

13.
Artigo em Inglês | MEDLINE | ID: mdl-31751222

RESUMO

OBJECTIVE: The study of pathogenic mechanism at the genetic level by imaging genetics methods enables to effectively reveal the association of histopathology and genetics. However, there is a lack of effective and accurate tools to establish association models from macroscopic to microscopic. METHODS: The multi-constrained joint non-negative matrix factorization (MCJNMF) was developed for simultaneous integration of genomic data and image data to identify common modules related to disease. Two types of data matrices were projected onto a common feature space, in which heterogeneous variables with large coefficients in the same projected direction form a common module. Meanwhile, the correlation between original data features was integrated by using regularization constraints to improve the biological relevance. Sparsity constraints and orthogonal constraints were performed on decomposition factors to minimize the redundancy between different bases and to reduce algorithm complexity. RESULTS: This algorithm was successfully performed on the module identification of lung metastasis in soft tissue sarcomas (STSs) by integrating FDG-PET image and DNA methylation data features. Multilevel analysis on the top extracted modules revealed that these modules were closely related to the lung metastasis. Particularly, several genes with diagnostic potential for lung metastasis can be discovered from high score modules. CONCLUSION: This method not only can be applied for the accurate identification of patterns related to pathogenic mechanism of diseases, but also has a significant implication for discovering protein biomarkers. SIGNIFICANCE: This method provides avenues for further studies of identifying complex association patterns of diseases according to different types of biological data.

14.
Immunol Res ; 67(4-5): 398-407, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31773490

RESUMO

Limited protective effects of commercially available vaccines necessitate the development of novel pneumococcal vaccines. We recently reported a pneumococcal systemic vaccine containing two proteins, Pneumococcal surface protein A (PspA of family 1 and 2) and a bacterium-like particle-based pneumococcal mucosal vaccine containing PspA2 and PspA4 fragments, both eliciting broad protective immune responses. We had previously reported that subcutaneous (s.c.+s.c.+s.c.) immunization with the systemic vaccine induced more pronounced humoral serum IgG responses, while intranasal (i.n.+i.n.+i.n.) immunization with the mucosal vaccine elicited a more pronounced mucosal secretory IgA (sIgA) response. We hypothesized that a combinatorial administration of the two vaccines might elicit more pronounced and broader protective immune responses. Therefore, this study aimed to determine the efficacy of combinatorial prime-boost immunization using both systemic and mucosal vaccines for a pneumococcal infection. Combinatorial prime-boost immunization (s.c.+i.n. and i.n.+s.c.) induced not only IgG, but also mucosal sIgA production at high levels. Systemic priming and mucosal boosting immunization (s.c.+i.n.) provided markedly better protection than homologous prime-boost immunization (s.c.+s.c.+s.c. and i.n.+i.n.+i.n.). Moreover, it induced more robust Th1 and Th17 cell-mediated immune responses than mucosal priming and systemic boosting immunization (i.n.+s.c.). These results indicate that combinatorial prime-boost immunization potentially induces a robust systemic and mucosal immune response, making it an optimal alternative for maximum protection against lethal pneumococcal infections.

15.
Cardiovasc Res ; 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31782769

RESUMO

AIMS: Overactivated B cells secrete pathological antibodies, which in turn accelerate the formation of abdominal aortic aneurysms (AAAs). Hyperhomocysteinemia (HHcy) aggravates AAA in mice; however, the underlying mechanisms remain largely elusive. In this study, we further investigated whether homocysteine (Hcy)-activated B cells produce antigen-specific antibodies that ultimately contribute to AAA formation. METHODS AND RESULTS: ELISA assays showed that HHcy induced the secretion of anti-beta 2 glycoprotein I (anti-ß2GPI) antibody from B cells both in vitro and in vivo. Mechanistically, Hcy increased the accumulation of various lipid metabolites in B cells tested by LC-MS/MS, which contributed to elevated anti-ß2GPI IgG secretion. By using the Toll-like receptor 4 (TLR4)-specific inhibitor TAK-242 or TLR4-deficient macrophages, we found that culture supernatants from Hcy-activated B cells and HHcy plasma IgG polarized inflammatory macrophages in a TLR4-dependent manner. In addition, HHcy markedly increased the incidence of elastase- and CaPO4-induced AAA in male BALB/c mice, which was prevented in µMT mice. To further determine the importance of IgG in HHcy-aggravated AAA formation, we purified plasma IgG from HHcy or control mice and then transferred the IgG into µMT mice, which were subsequently subjected to elastase- or CaPO4-induced AAA. Compared with µMT mice that received plasma IgG from control mice, µMT mice that received HHcy plasma IgG developed significantly exacerbated elastase- or CaPO4-induced AAA accompanied by increased elastin degradation, MMP2/9 expression, and anti-ß2GPI IgG deposition in vascular lesions, as shown by immunofluorescence histochemical staining. CONCLUSION: Our findings reveal a novel mechanism by which Hcy-induced B cell-derived pathogenic anti-ß2GPI IgG might, at least in part, contribute to HHcy-aggravated chronic vascular inflammation and AAA formation. TRANSLATIONAL PERSPECTIVE: HHcy is an independent risk factor for cardiovascular diseases in which B cell secretion of IgG antibodies play a key role. However, whether the antigen specific antibody production is changed during HHcy-accelerated AAA remains unclear. Our results provided the first evidence supporting the important role of activated B cell-derived anti-ß2GPI IgG in HHcy-aggravated chronic vascular inflammation and AAA formation. It sheds new light on understanding pathogenesis of HHcy-accelerated AAA. In addition, anti-ß2GPI IgG may be a potential diagnostic marker and therapeutic target for HHcy-related vascular injury.

16.
Cell Death Dis ; 10(12): 890, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31767831

RESUMO

Kindlin-2 plays an important role in the regulation of cardiac structure and function. Depletion of Kindlin-2 contributes to cardiac hypertrophy and progressive heart failure, however, the precise mechanisms involved in this process remain unclear. GATA4 is a critical transcription factor in regulating cardiogenesis. We found that Kindlin-2 suppresses the expression of GATA4 through binding to its promoter and prevents cardiomyocytes from hypertrophy induced by isoproterenol (ISO) treatment. Mechanistically, Kindlin-2 interacts with histone methyltransferase SUV39H1 and recruits it to GATA4 promoter leading to the occupancy of histone H3K9 di- and tri-methylation. Furthermore, to confirm the function of Kindlin-2 in vivo, we generated mice with targeted deletion of cardiac Kindlin-2. We found that 6-month-old Kindlin-2 cKO mice have developed hypertrophic cardiomyopathy and that this pathological process can be accelerated by ISO-treatment. GATA4 expression was markedly activated in cardiac tissues of Kindlin-2 cKO mice compared to wild-type animals. Collectively, our data revealed that Kindlin-2 suppresses GATA4 expression by triggering histone H3K9 methylation in part and protects heart from pathological hypertrophy.

17.
Cell Signal ; 66: 109485, 2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31770579

RESUMO

Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/ß-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.

18.
Cell Metab ; 30(5): 937-951.e5, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31668872

RESUMO

Obesity-induced adipose dysfunction is a major contributor to atherosclerosis. Cold exposure has been reported to affect atherosclerosis through regulation of adipose function, but the mechanism has not been well clarified. Here, adipocyte hypoxia-inducible factor 2α (HIF-2α) was upregulated after mild cold exposure at 16°C and mediated cold-induced thermogenesis. Adipocyte HIF-2α deficiency exacerbated Western-diet-induced atherosclerosis by increasing adipose ceramide levels, which blunted hepatocyte cholesterol elimination and thermogenesis. Mechanistically, Acer2, the gene encoding alkaline ceramidase 2, was identified as a novel target gene of HIF-2α, triggering ceramide catabolism. Adipose overexpression of ACER2 rescued adipocyte HIF-2α-deficiency-induced exacerbation of atherosclerosis. Furthermore, activation of adipose HIF-2α by the HIF prolyl hydroxylase inhibitor FG-4592 had protective effects on atherosclerosis, accompanied by a reduction in adipose and plasma ceramide and plasma cholesterol levels. This study highlights adipocyte HIF-2α as a putative drug target against atherosclerosis.

19.
Heliyon ; 5(9): e02468, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31687564

RESUMO

Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent due to its selective killing on cancer cells while sparing the normal cells. Nevertheless, breast adenocarcinoma cells can develop TRAIL resistance. Therefore, this project investigated the anti-cancer effects of the combination of epigenetic drugs zebularine and trichostatin A (ZT) with TRAIL (TZT) on the human breast adenocarcinoma cells. This treatment regimen was compared with the natural anti-cancer compound curcumin (Cur) and standard chemotherapeutic drug doxorubicin (Dox). As compared to TRAIL treatment, TZT treatment hampered the cell viability of human breast adenocarcinoma cells MDA-MB-231 significantly but not MCF-7 and immortalized non-cancerous human breast epithelial cells MCF10A. Unlike TZT, Cur and Dox treatments reduced cell viability in both human breast adenocarcinoma and epithelial cells significantly. Nevertheless, there were no changes in cell cycle in both TRAIL and TZT treatments in breast adenocarcinoma and normal epithelial cells. Intriguingly, Cur and Dox treatment generally induced G2/M arrest in MDA-MB-231, MCF-7 and MCF10A but Cur induced S phase arrest in MCF10A. The features of apoptosis such as morphological changes, apoptotic activity and the expression of cleaved poly (ADP) ribose polymerase (PARP) protein were more prominent in TRAIL and TZT-treated MDA-MB-231 as compared to MCF10A at 24 h post-treatment. Compared to TZT treatment, Cur and Dox treatments exhibited lesser apoptotic features in MDA-MB-231. Collectively, the sensitization using Zeb and TSA to augment TRAIL-induced apoptosis might be an alternative therapy towards human breast adenocarcinoma cells, without harming the normal human breast epithelial cells.

20.
J Neuroinflammation ; 16(1): 214, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722723

RESUMO

BACKGROUND: Neonatal hypoxic-ischemic brain damage (HIBD), a leading cause of neonatal mortality, has intractable sequela such as epilepsy that seriously affected the life quality of HIBD survivors. We have previously shown that ion channel dysfunction in the central nervous system played an important role in the process of HIBD-induced epilepsy. Therefore, we continued to validate the underlying mechanisms of TRPV1 as a potential target for epilepsy. METHODS: Neonatal hypoxic ischemia and oxygen-glucose deprivation (OGD) were used to simulate HIBD in vivo and in vitro. Primarily cultured astrocytes were used to assess the expression of TRPV1, glial fibrillary acidic protein (GFAP), cytoskeletal rearrangement, and inflammatory cytokines by using Western blot, q-PCR, and immunofluorescence. Furthermore, brain electrical activity in freely moving mice was recorded by electroencephalography (EEG). TRPV1 current and neuronal excitability were detected by whole-cell patch clamp. RESULTS: Astrocytic TRPV1 translocated to the membrane after OGD. Mechanistically, astrocytic TRPV1 activation increased the inflow of Ca2+, which promoted G-actin polymerized to F-actin, thus promoted astrocyte migration after OGD. Moreover, astrocytic TRPV1 deficiency decreased the production and release of pro-inflammatory cytokines (TNF, IL-6, IL-1ß, and iNOS) after OGD. It could also dramatically attenuate neuronal excitability after OGD and brain electrical activity in HIBD mice. Behavioral testing for seizures after HIBD revealed that TRPV1 knockout mice demonstrated prolonged onset latency, shortened duration, and decreased seizure severity when compared with wild-type mice. CONCLUSIONS: Collectively, TRPV1 promoted astrocyte migration thus helped the infiltration of pro-inflammatory cytokines (TNF, IL-1ß, IL-6, and iNOS) from astrocytes into the vicinity of neurons to promote epilepsy. Our study provides a strong rationale for astrocytic TRPV1 to be a therapeutic target for anti-epileptogenesis after HIBD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA