Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988508

RESUMO

It has recently been shown that sulfur, a solid material in its elementary form S8, can stay in a supercooled state as liquid sulfur in an electrochemical cell. We establish that this newly discovered state could have implications for lithium-sulfur batteries. Here, through in situ studies of electrochemical sulfur generation, we show that liquid (supercooled) and solid elementary sulfur possess very different areal capacities over the same charging period. To control the physical state of sulfur, we studied its growth on two-dimensional layered materials. We found that on the basal plane, only liquid sulfur accumulates; by contrast, at the edge sites, liquid sulfur accumulates if the thickness of the two-dimensional material is small, whereas solid sulfur nucleates if the thickness is large (tens of nanometres). Correlating the sulfur states with their respective areal capacities, as well as controlling the growth of sulfur on two-dimensional materials, could provide insights for the design of future lithium-sulfur batteries.

2.
Small ; 16(1): e1905557, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31805218

RESUMO

Nacre-mimetic 2D nanofluidic materials with densely packed sub-nanometer-height lamellar channels find widespread applications in water-, energy-, and environment-related aspects by virtue of their scalable fabrication methods and exceptional transport properties. Recently, light-powered nanofluidic ion transport in synthetic materials gained considerable attention for its remote, noninvasive, and active control of the membrane transport property using the energy of light. Toward practical application, a critical challenge is to overcome the dependence on inhomogeneous or site-specific light illumination. Here, asymmetric photonic-ionic devices based on kirigami-tailored graphene oxide paper are fabricated, and directional nanofluidic ion transport properties therein powered by full-area light illumination are demonstrated. The in-plane asymmetry of the graphene oxide paper is essential to the generation of photoelectric driving force under homogeneous illumination. This light-powered ion transport phenomenon is explained based on a modified carrier diffusion model. In asymmetric nanofluidic structures, enhanced recombination of photoexcited charge carriers at the membrane boundary breaks the electric potential balance in the horizontal direction, and thus drives the ion transport in that direction under symmetric illumination. The kirigami-based strategy provides a facile and scalable way to fabricate paper-like photonic-ionic devices with arbitrary shapes, working as fundamental elements for large-scale light-harvesting nanofluidic circuits.

3.
Ecotoxicol Environ Saf ; 188: 109894, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31706239

RESUMO

Modulation of plant salt tolerance has been drawing great attention. Thymol is a kind of natural chemical that has been developed as anti-microbial reagent and medicine. To date, we still have limited knowledge about thymol-modulated plant physiology. In this work, physiological, histochemical, and biochemical methods were adopted to study thymol-conferred salt resistance in the root of rice (Oryza sativa). Thymol significantly rescued root growth under salt stress. Thymol ameliorated cell membrane damage, oxidative stress, ROS accumulation, and cell death in roots under salt stress. Thymol-attenuated oxidative stress may be resulted from the activation of anti-oxidative capacity, including both enzymatic and non-enzymatic system. Thymol treatment significantly decreased Na+ content in root cells upon salt stress, which might be ascribed to the upregulation of OsSOS1 (salt overly sensitive 1) facilitating Na+ exclusion. In addition, thymol stimulated the expression of genes encoding tonoplast OsNHX (Na+/H+antiporter), which may help root cells to compartmentalize Na+ in vacuole. The results of these works evidenced that thymol was capable of inducing salt tolerance by reestablishing ROS homeostasis and modulating cellular Na+ flux in rice roots. These findings may be applicable to improve crop growth in salinity area.


Assuntos
Antioxidantes/metabolismo , Homeostase/efeitos dos fármacos , Oryza/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Sódio/metabolismo , Timol/farmacologia , Íons/metabolismo , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Tolerantes a Sal , Trocadores de Sódio-Hidrogênio/metabolismo
4.
Front Microbiol ; 10: 1419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293550

RESUMO

Controlling aflatoxigenic Aspergillus flavus and aflatoxins (AFs) in grains and food during storage is a great challenge to humans worldwide. Alcaligenes faecalis N1-4 isolated from tea rhizosphere soil can produce abundant antifungal volatiles, and greatly inhibited the growth of A. flavus in un-contacted face-to-face dual culture testing. Gas chromatography tandem mass spectrometry revealed that dimethyl disulfide (DMDS) and methyl isovalerate (MI) were two abundant compounds in the volatile profiles of N1-4. DMDS was found to have the highest relative abundance (69.90%, to the total peak area) in N1-4, which prevented the conidia germination and mycelial growth of A. flavus at 50 and 100 µL/L, respectively. The effective concentration for MI against A. flavus is 200 µL/L. Additionally, Real-time quantitative PCR analysis proved that the expression of 12 important genes in aflatoxin biosynthesis pathway was reduced by these volatiles, and eight genes were down regulated by 4.39 to 32.25-folds compared to control treatment with significant differences. And the A. flavus infection and AFs contamination in groundnut, maize, rice and soybean of high water activity were completely inhibited by volatiles from N1-4 in storage. Scanning electron microscope further proved that A. flavus conidia inoculated on peanuts surface were severely damaged by volatiles from N1-4. Furthermore, strain N1-4 showed broad and antifungal activity to other six important plant pathogens including Fusarium graminearum, F. equiseti, Alternaria alternata, Botrytis cinerea, Aspergillus niger, and Colletotrichum graminicola. Thus, A. faecalis N1-4 and volatile DMDS and MI may have potential to be used as biocontrol agents to control A. flavus and AFs during storage.

5.
Nat Nanotechnol ; 14(7): 705-711, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31133663

RESUMO

The urgent need for safer batteries is leading research to all-solid-state lithium-based cells. To achieve energy density comparable to liquid electrolyte-based cells, ultrathin and lightweight solid electrolytes with high ionic conductivity are desired. However, solid electrolytes with comparable thicknesses to commercial polymer electrolyte separators (~10 µm) used in liquid electrolytes remain challenging to make because of the increased risk of short-circuiting the battery. Here, we report on a polymer-polymer solid-state electrolyte design, demonstrated with an 8.6-µm-thick nanoporous polyimide (PI) film filled with polyethylene oxide/lithium bis(trifluoromethanesulfonyl)imide (PEO/LiTFSI) that can be used as a safe solid polymer electrolyte. The PI film is nonflammable and mechanically strong, preventing batteries from short-circuiting even after more than 1,000 h of cycling, and the vertical channels enhance the ionic conductivity (2.3 × 10-4 S cm-1 at 30 °C) of the infused polymer electrolyte. All-solid-state lithium-ion batteries fabricated with PI/PEO/LiTFSI solid electrolyte show good cycling performance (200 cycles at C/2 rate) at 60 °C and withstand abuse tests such as bending, cutting and nail penetration.

6.
J Chromatogr A ; 1596: 194-198, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30961961

RESUMO

A fast, convenient and commercially available approach for analyzing humic acid content in fertilizer using headspace gas chromatography (HS-GC) is presented in this paper. Humic acid is converted into carbon dioxide based on the oxidation of humic acid in strong acidic medium and can be measured via automatic HS-GC. Conditions for the alkaline extraction and the humic acid oxidation process are also optimized. The new technique proved to be precise (RSD ≤ 3.59%) and accurate (relative errors≤9.46% as compared with the spectrophotometric approach). The newly established technique presents a practical tool to routinely analyze humic acid content in fertilizer during the fertilizer production.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia Gasosa , Fertilizantes/análise , Substâncias Húmicas/análise , Ácidos/química , Dióxido de Carbono/química , Oxirredução
7.
Nat Commun ; 10(1): 1171, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862778

RESUMO

Layered graphene oxide membranes (GOM) with densely packed sub-nanometer-wide lamellar channels show exceptional ionic and molecular transport properties. Mass and charge transport in existing materials follows their concentration gradient, whereas attaining anti-gradient transport, also called active transport, remains a great challenge. Here, we demonstrate a coupled photon-electron-ion transport phenomenon through the GOM. Upon asymmetric light illumination, cations are able to move thermodynamically uphill over a broad range of concentrations, at rates much faster than that via simple diffusion. We propose, as a plausible mechanism, that light irradiation reduces the local electric potential on the GOM following a carrier diffusion mechanism. When the illumination is applied to an off-center position, an electric potential difference is built that can drive the transport of ionic species. We further develop photonic ion switches, photonic ion diodes, and photonic ion transistors as the fundamental elements for active ion sieving and artificial photosynthesis on synthetic nanofluidic circuits.

8.
Phys Chem Chem Phys ; 21(13): 6970-6975, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30869104

RESUMO

Flow effects on chemical reactions at a solid-liquid interface are fundamental to diverse technological applications but remain poorly understood from a molecular perspective. In this work, we demonstrate that the coupling between laminar flow and surface chemistry can be adequately described using classical density functional theory for ion distributions near the surface in conjunction with kinetics modeling and the Navier-Stokes equation. In good agreement with recent experiments, we find that flowing of fresh water over a silica surface may result in drastic changes in the rate of silica dissolution and, consequently, the surface charge density and the interfacial structure. A nonlinear streaming current is predicted when the surface reactions are disturbed by a laminar flow.

9.
Anal Biochem ; 576: 9-12, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30917946

RESUMO

A fast and convenient headspace gas chromatographic (HS-GC) approach was described for the estimation of urea in human urine. The HS-GC could detect the generated carbon dioxide derived from the urease-catalyzed hydrolysis of urea. It was found that the hydrolysis of urea catalyzed by urease was completed within 40 min at 35 °C. The results proved the great accuracy (relative errors ≤ 8.48%) and precision (RSD ≤ 2.66%) of the HS-GC approach. Moreover, the recoveries ranged from 97.9% to 101.5%. The new approach is rapid and automated, which provides a new way to routinely analyze urea in urine for the control of metabolic disease.

10.
Virology ; 529: 57-64, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30665098

RESUMO

The results of the RV144 vaccine clinical trial showed a correlation between high level of anti-V1V2 antibodies (Abs) and a decreased risk of acquiring HIV-1 infection. This turned the focus of HIV vaccine design to the induction of elevated levels of anti-V2 Abs to increase vaccine efficacy. In plasma samples from HIV-1 infected Cameroonian individuals, we observed broad variations in levels of anti-V2 Abs, and 6 of the 79 plasma samples tested longitudinally displayed substantial deficiency of V2 Abs. Sequence analysis of the V2 region from plasma viruses and multivariate analyses of V2 characteristics showed a significant difference in several features between V2-deficient and V2-reactive plasma Abs. These results suggest that HIV vaccine immunogens containing a shorter V2 region with fewer glycosylation sites and higher electrostatic charges can be beneficial for induction of a higher level of anti-V2 Abs and thus contribute to HIV vaccine efficacy.


Assuntos
Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1 , Vacinas contra a AIDS/imunologia , Camarões/epidemiologia , Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Humanos , Análise Multivariada , Carga Viral
11.
J Chromatogr A ; 1584: 187-191, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30558849

RESUMO

This paper introduces a convenient approach for determining iodate in iodized salt by headspace gas chromatography (HS-GC). The analytical technique can measure the generated carbon dioxide from the redox reaction between iodate and sodium oxalate in the presence of strong acid. The formed carbon dioxide from this reaction in a closed vial is measured by GC. It was observed that the redox reaction in the vial was completed in 40 min at 95 °C. The results indicated that this analytical technique is precise (RSD ≤ 2.69%) and accurate (relative errors ≤ 7.21%). The present approach is fast and simple, providing a robust avenue to the routine estimation of iodate in iodized salt in a wide variety of applications from processing to quality monitoring.


Assuntos
Dióxido de Carbono/análise , Cromatografia Gasosa/métodos , Iodatos/análise , Iodo/química , Cloreto de Sódio na Dieta/análise , Humanos , Ácido Oxálico , Oxirredução
12.
J Chromatogr A ; : 460832, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31928771

RESUMO

This paper demonstrated a simple and rapid approach for the determination of lead dioxide in minium using a headspace gas chromatographic (GC) technique. This new approach was based on the measurement of carbon dioxide from the redox reaction between lead dioxide and oxalic acid in a sealed headspace vial. The obtained results indicated that the new approach had good measurement accuracy (relative errors ≤8.71%) and precision (RSD ≤2.86%). Moreover, the limit of quantification (LOQ) and limit of detection (LOD) for this new approach were respectively 0.34% and 0.10%, and the recoveries ranged from 97.9 to 101.7%. The new approach is low-cost and reliable, which has potential for use in the analysis of lead dioxide in minium and related products.

13.
Neural Regen Res ; 13(9): 1650-1656, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30127128

RESUMO

Nerve scarring after peripheral nerve injury can severely hamper nerve regeneration and functional recovery. Further, the anti-inflammatory cytokine, interleukin-10, can inhibit nerve scar formation. Saikosaponin a (SSa) is a monomer molecule extracted from the Chinese medicine, Bupleurum. SSa can exert anti-inflammatory effects in spinal cord injury and traumatic brain injury. However, it has not been shown whether SSa can play a role in peripheral nerve injury. In this study, rats were randomly assigned to three groups. In the sham group, the left sciatic nerve was directly sutured after exposure. In the sciatic nerve injury (SNI) + SSa and SNI groups, the left sciatic nerve was sutured and continuously injected daily with SSa (10 mg/kg) or an equivalent volume of saline for 7 days. Enzyme linked immunosorbent assay results demonstrated that at 7 days after injury, interleukin-10 level was considerably higher in the SNI + SSa group than in the SNI group. Masson staining and western blot assay demonstrated that at 8 weeks after injury, type I and III collagen content was lower and nerve scar formation was visibly less in the SNI + SSa group compared with the SNI group. Simultaneously, sciatic functional index and nerve conduction velocity were improved in the SNI + SSa group compared with the SNI group. These results confirm that SSa can increase the expression of the anti-inflammatory factor, interleukin-10, and reduce nerve scar formation to promote functional recovery of injured sciatic nerve.

14.
Neural Regen Res ; 13(4): 653-663, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29722317

RESUMO

The anti-inflammatory and antioxidant effects of exendin-4 (Ex-4) have been reported previously. However, whether (Ex-4) has anti-inflammatory and antioxidant effects on high-altitude cerebral edema (HACE) remains poorly understood. In this study, two rat models of HACE were established by placing rats in a hypoxic environment with a simulated altitude of either 6000- or 7000-m above sea level (MASL) for 72 hours. An altitude of 7000 MASL with 72-hours of hypoxia was found to be the optimized experimental paradigm for establishing HACE models. Then, in rats where a model of HACE was established by introducing them to a 7000 MASL environment with 72-hours of hypoxia treatment, 2, 10 and, 100 µg of Ex-4 was intraperitoneally administrated. The open field test and tail suspension test were used to test animal behavior. Routine methods were used to detect change in inflammatory cells. Hematoxylin-eosin staining was performed to determine pathological changes to brain tissue. Wet/dry weight ratios were used to measure brain water content. Evans blue leakage was used to determine blood-brain barrier integrity. Enzyme-linked immunosorbent assay (ELISA) was performed to measure markers of inflammation and oxidative stress including superoxide dismutase, glutathione, and malonaldehyde values, as well as interleukin-6, tumor necrosis factor-alpha, cyclic adenosine monophosphate levels in the brain tissue. Western blot analysis was performed to determine the levels of occludin, ZO-1, SOCS-3, vascular endothelial growth factor, EPAC1, nuclear factor-kappa B, and aquaporin-4. Our results demonstrate that Ex-4 preconditioning decreased brain water content, inhibited inflammation and oxidative stress, alleviated brain tissue injury, maintain blood-brain barrier integrity, and effectively improved motor function in rat models of HACE. These findings suggest that Ex-4 exhibits therapeutic potential in the treatment of HACE.

15.
Biomed Chromatogr ; 32(10): e4288, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29768671

RESUMO

A reaction headspace gas chromatography (HS-GC) technique was investigated for quantitatively analyzing trichloroacetic acid in human urine. This method is based on the decomposition reaction of trichloroacetic acid under high-temperature conditions. The carbon dioxide and chloroform formed from the decomposition reaction can be respectively detected by the thermal conductivity detection HS-GC and flame ionization detection HS-GC. The reaction can be completed in 60 min at 90°C. This method was used to quantify 25 different human urine samples, which had a range of trichloroacetic acid from 0.52 to 3.47 mg/L. It also utilized two different detectors, the thermal conductivity detector and the flame ionization detector. The present reaction HS-GC method is accurate, reliable and well suitable for batch detection of trichloroacetic acid in human urine.


Assuntos
Cromatografia Gasosa/métodos , Ácido Tricloroacético/urina , Calibragem , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ácido Tricloroacético/química , Ácido Tricloroacético/isolamento & purificação
16.
J Sep Sci ; 41(13): 2731-2735, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29665264

RESUMO

The purpose of this work is to introduce a new method for quantitatively analyzing water absorption capacity in wheat flour by a headspace gas chromatographic technique. This headspace gas chromatographic technique was based on measuring the water vapor released from a series of wheat flour samples with different contents of water addition. According to the different trends between the vapor and wheat flour phase before and after the water absorption capacity in wheat flour, a turning point (corresponding to water absorption capacity in wheat flour) can be obtained by fitting the data of the water gas chromatography peak area from different wheat flour samples. The data showed that the phase equilibrium in the vial can be achieved in 25 min at desired temperature (35°C). The relative standard deviation of the reaction headspace gas chromatographic technique in water absorption capacity determination was within 3.48%, the relative differences has been determined by comparing the water absorption capacity obtained from this new analytical technique with the data from the reference technique (i.e., the filtration method), which are less than 8.92%. The new headspace gas chromatographic method is automated, accurate and be a reliable tool for quantifying water absorption capacity in wheat flour in both laboratory research and mill applications.


Assuntos
Cromatografia Gasosa/métodos , Farinha/análise , Triticum/química , Água/análise , Temperatura Ambiente
17.
J Chem Phys ; 148(8): 084701, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495756

RESUMO

The classical density functional theory is incorporated with the Stokes equation to examine the thermodynamic efficiency of pressure-driven electrokinetic energy conversion in slit nanochannels. Different from previous mean-field predictions, but in good agreement with recent experiments, the molecular theory indicates that the thermodynamic efficiency may not be linearly correlated with the channel size or the electrolyte concentration. For a given electrolyte, an optimal slit nanochannel size and ion concentration can be identified to maximize both the electrical current and the thermodynamic efficiency. The optimal conditions are sensitive to a large number of parameters including ion diameters, valences, electrolyte concentration, channel size, and the valence- and size-asymmetry of oppositely charged ionic species. The theoretical results offer fresh insights into pressure-driven current generation processes and are helpful guidelines for the design of apparatus for the electrokinetic energy conversion.

18.
J Sep Sci ; 41(5): 1091-1095, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29193873

RESUMO

We investigate a simple and accurate method for quantitatively analyzing dissolved inorganic carbon in environmental water by reaction headspace gas chromatography. The neutralization reaction between the inorganic carbon species (i.e. bicarbonate ions and carbonate ions) in environmental water and hydrochloric acid is carried out in a sealed headspace vial, and the carbon dioxide formed from the neutralization reaction, the self-decomposition of carbonic acid, and dissolved carbon dioxide in environmental water is then analyzed by headspace gas chromatography. The data show that the headspace gas chromatography method has good precision (relative standard deviation ≤ 1.63%) and accuracy (relative differences ≤ 5.81% compared with the coulometric titration technique). The headspace gas chromatography method is simple, reliable, and can be well applied in the dissolved inorganic carbon detection in environmental water.

19.
J Sci Food Agric ; 98(8): 3208-3212, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29171868

RESUMO

BACKGROUND: An automated and accurate headspace gas chromatographic (HS-GC) technique was investigated for rapidly quantifying water content in edible oils. In this method, multiple headspace extraction (MHE) procedures were used to analyse the integrated water content from the edible oil sample. A simple vapour phase calibration technique with an external vapour standard was used to calibrate both the water content in the gas phase and the total weight of water in edible oil sample. After that the water in edible oils can be quantified. RESULTS: The data showed that the relative standard deviation of the present HS-GC method in the precision test was less than 1.13%, the relative differences between the new method and a reference method (i.e. the oven-drying method) were no more than 1.62%. CONCLUSION: The present HS-GC method is automated, accurate, efficient, and can be a reliable tool for quantifying water content in edible oil related products and research. © 2017 Society of Chemical Industry.


Assuntos
Cromatografia Gasosa/métodos , Óleos Vegetais/análise , Água/análise , Calibragem , Cromatografia Gasosa/instrumentação , Cromatografia Gasosa/normas , Temperatura Ambiente
20.
J Chromatogr A ; 1533: 221-225, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29276079

RESUMO

This paper investigates a new double sealing technique for increasing the precision of the headspace gas chromatographic method. The air leakage problem caused by the high pressure in the headspace vial during the headspace sampling process has a great impact to the measurement precision in the conventional headspace analysis (i.e., single sealing technique). The results (using ethanol solution as the model sample) show that the present technique is effective to minimize such a problem. The double sealing technique has an excellent measurement precision (RSD < 0.15%) and accuracy (recovery = 99.1%-100.6%) for the ethanol quantification. The detection precision of the present method was 10-20 times higher than that in earlier HS-GC work that use conventional single sealing technique. The present double sealing technique may open up a new avenue, and also serve as a general strategy for improving the performance (i.e., accuracy and precision) of headspace analysis of various volatile compounds.


Assuntos
Cromatografia Gasosa/métodos , Etanol/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA