Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Water Res ; 183: 115969, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721703


Frequent occurrence of harmful algal blooms (HABs) and red tides in freshwater and seawater poses serious threats to water treatment and drives the application of membrane-based technologies in algal separation. Despite the high removal efficiency of algal cells and their metabolites (e.g. organic matter and toxins) by membranes, the generation of concentrate and waste streams presents a major challenge. In this paper, we review the scenarios under which membrane-based processes are integrated with algal separation, with particular attention given to (i) drinking water production and desalination at low algal concentrations and (ii) cyanobacteria-laden water treatment/desalination. The concentrate and waste streams from backwashing and membrane cleaning in each scenario are characterised with this information facilitating a better understanding of the transport of algal cells and metabolites in membrane processes. Current strategies and gaps in managing concentrate and waste streams are identified with guidance and perspectives for future studies discussed in an Eisenhower framework.

Purificação da Água , Água , Água Doce , Proliferação Nociva de Algas , Água do Mar , Águas Residuárias
Water Res ; 177: 115785, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32304906


In the present study, radiolabelled formate was used as a probe compound in order to gain mechanistic insight into the catalytic ozonation process using a commercially available iron oxide-impregnated activated carbon catalyst. We simultaneously analysed the adsorptive and oxidative removal of formate in order to determine the contribution of the catalyst to adsorption and oxidant generation processes respectively. Our results show that the presence of the catalyst enhanced ozone decay as well as the rate and extent of formate oxidation at pH 3.0 compared to that observed in the presence of ozone alone as a result of oxidant generation via O3-Fe oxide interaction. A reduction in rate and extent of formate oxidation on addition of t-butanol and Cl- (known hydroxyl radical (•OH) scavengers under acidic conditions) provides evidence that the oxidant generated during catalytic ozonation at pH 3.0 is •OH. Moreover, the oxidation of formate during catalytic ozonation mostly occurs at the solid-liquid interface and/or in bulk solution with adsorption playing no role in the overall oxidation process with this finding supported by the exceptionally high oxidation efficiency compared to the extent of adsorption observed when no O3 was added. While catalytic ozonation was effective in formate oxidation at pH 3.0, the presence of the catalyst did not lead to an increase in either the rate or extent of formate oxidation at pH 7.3 and 8.5 suggesting that only protonated iron oxide surface sites generate strong oxidant(s) on interaction with O3. Based on our understanding of the processes operating during the ozonation and catalytic ozonation processes, a mathematical model has been developed that adequately describes the experimental results obtained here. Overall, this study shows that systematic measurement of ozone decay, removal of the parent compound as well as formation of the oxidized products under well controlled conditions are required for unequivocal elucidation of the mechanism of catalytic ozonation.

Ozônio , Poluentes Químicos da Água , Purificação da Água , Catálise , Carvão Vegetal , Compostos Férricos
Environ Sci Technol ; 54(8): 5227-5236, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32202775


Magnéli phase titanium suboxide, Ti4O7, has attracted increasing attention as a potential electrode material in anodic oxidation as a result of its high efficiency and (electro)chemical stability. Although carbon materials have been amended to Ti4O7 electrodes to enhance the electrochemical performance or are present as an unwanted residual during the electrode fabrication, there has been no comprehensive investigation of how these carbon materials affect the electrochemical performance of the resultant Ti4O7 electrodes. As such, we investigated the electrochemical properties of Ti4O7 electrodes impregnated with carbon materials at different contents (and chemical states). Results of this study showed that while pure Ti4O7 electrodes exhibited an extremely low rate of interfacial electron transfer, the introduction of minor amounts of carbon materials (at values as low as 0.1 wt %) significantly facilitated the electron transfer process and decreased the oxygen evolution reaction potential. The oxygen-containing functional groups have been shown to play an important role in interfacial electron transfer with moderate oxidation of the carbon groups aiding electron uptake at the electrode surface (and consequently organic oxidation) while the generation of carboxyl groups-a process that is likely to occur in long-term operation-increased the interfacial resistance and thus retarded the oxidation process. Results of this study provide a better understanding of the relationship between the nature of the electrode surface and anodic oxidation performance with these insights likely to facilitate improved electrode design and optimization of operation of anodic oxidation reactors.

Titânio , Poluentes Químicos da Água , Carbono , Eletrodos , Oxirredução