Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 584
Filtrar
1.
Cancer Immunol Res ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163233

RESUMO

Comprehensive investigation of CD8+ T cells in acute myeloid leukemia (AML) is essential for developing immunotherapeutic strategies beyond immune checkpoint blockade. Herein, we performed single-cell RNA profiling of CD8+ T cells from 3 healthy bone marrow donors and 23 newly diagnosed (NewlyDx) and 8 relapsed/refractory (RelRef) AML patients. Cells co-expressing canonical exhaustion markers formed a cluster constituting <1% of all CD8+ T cells. We identified two effector CD8+ T cell subsets characterized by distinct cytokine and metabolic profiles that were differentially enriched in NewlyDx and RelRef patients. We refined a 25-gene CD8-derived signature correlating with therapy resistance, including genes associated with activation, chemoresistance, and terminal differentiation. Pseudotemporal trajectory analysis supported enrichment of a terminally differentiated state in CD8+ T cells with high CD8-derived signature expression at relapse or refractory disease. Higher expression of the 25-gene CD8 AML signature correlated with poorer outcomes in previously untreated AML patients, suggesting that the bona fide state of CD8+ T cells and their degree of differentiation are clinically relevant. Immune clonotype tracking revealed more phenotypic transitions in CD8 clonotypes in NewlyDx than in RelRef patients. Furthermore, CD8+ T cells from RelRef patients had a higher degree of clonal hyperexpansion associated with terminal differentiation and higher CD8-derived signature expression. Clonotype-derived antigen prediction revealed that most previously unreported clonotypes were patient-specific, suggesting significant heterogeneity in AML immunogenicity. Thus, immunologic reconstitution in AML is likely to be most successful at earlier disease stages when CD8+ T cells are less differentiated and have greater capacity for clonotype transitions.

2.
Cancers (Basel) ; 15(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37190240

RESUMO

FLT3 mutations are present in 30% of newly diagnosed patients with acute myeloid leukemia. Two broad categories of FLT3 mutations are ITD and TKD, with the former having substantial clinical significance. Patients with FLT3-ITD mutation present with a higher disease burden and have inferior overall survival, due to high relapse rates after achieving remission. The development of targeted therapies with FLT3 inhibitors over the past decade has substantially improved clinical outcomes. Currently, two FLT3 inhibitors are approved for use in patients with acute myeloid leukemia: midostaurin in the frontline setting, in combination with intensive chemotherapy; and gilteritinib as monotherapy in the relapsed refractory setting. The addition of FLT3 inhibitors to hypomethylating agents and venetoclax offers superior responses in several completed and ongoing studies, with encouraging preliminary data. However, responses to FLT3 inhibitors are of limited duration due to the emergence of resistance. A protective environment within the bone marrow makes eradication of FLT3mut leukemic cells difficult, while prior exposure to FLT3 inhibitors leads to the development of alternative FLT3 mutations as well as activating mutations in downstream signaling, promoting resistance to currently available therapies. Multiple novel therapeutic strategies are under investigation, including BCL-2, menin, and MERTK inhibitors, as well as FLT3-directed BiTEs and CAR-T therapy.

3.
JCO Precis Oncol ; 7: e2200707, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37196217

RESUMO

PURPOSE: Philadelphia-like (Ph-like) B-cell ALL is a high-risk subtype of B-cell ALL that shares a gene expression profile with Ph-positive ALL, but without a BCR::ABL1 fusion. A subgroup of these patients have fusions or rearrangements involving genes such as ABL1, ABL2, PDGFRß, JAK2, and EPOR, some of which are potentially sensitive to tyrosine kinase inhibitors (TKIs). Prompt identification of these genetic aberrations are important for prognostication and treatment decisions. PATIENTS AND METHODS: We performed a retrospective review of patients with B-cell ALL treated at MD Anderson Cancer Center to identify recurrent genetic fusions commonly seen in Ph-like ALL and focus on patients treated with TKI. RESULTS: We identified 23 patients with recurrent genetic fusions commonly seen in Ph-like ALL; 14 had ABL class fusions (eight ABL1, one ABL2, and five PDGFRß) and nine had JAK2 class fusions (five JAK2 and four EPOR). Notably, several of these fusions were cryptic by conventional cytogenetics and fluorescent in situ hybridization (FISH) assays and identified only by multiplex fusion assay. Thirteen of these 23 patients received a TKI as part of their treatment; this included ABL1 fusion (n = 8), PDGFRß fusion (n = 4), and EPOR fusion (n = 1). All four patients with ABL1 fusions who received TKI with induction chemotherapy are alive in first remission. CONCLUSION: Understanding the genomics of B-cell ALL is important for disease prognostication and for precise treatment planning. Besides conventional cytogenetics and directed FISH testing, multiplex fusion assays can help identify recurrent chromosomal translocations that are seen in patients with Ph-like ALL. Early initiation of TKI appears beneficial; larger studies are required to fully understand the benefit of TKI and to design rational combination therapies for these patients.


Assuntos
Rearranjo Gênico , Inibidores de Proteína Tirosina Quinase , Humanos , Hibridização in Situ Fluorescente , Estudos Retrospectivos , Transcriptoma
4.
Res Sq ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162954

RESUMO

Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these combination therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors. Given that OXPHOS inhibition enhances VEN antileukemic activity against AML, we hypothesized that ME-344 could enhance the anti-AML activity of VEN. Here we report that ME-344 synergized with VEN to target AML cell lines and primary patient samples while sparing normal hematopoietic cells. Cooperative suppression of OXPHOS was detected in a subset of AML cell lines and primary patient samples. Metabolomics analysis revealed a significant reduction of purine biosynthesis metabolites by ME-344. Further, lometrexol, an inhibitor of purine biosynthesis, synergistically enhanced VEN-induced apoptosis in AML cell lines. Interestingly, AML cells with acquired resistance to AraC showed significantly increased purine biosynthesis metabolites and sensitivities to ME-344. Furthermore, synergy between ME-344 and VEN was preserved in these AraC-resistant AML cells. These results translated into significantly prolonged survival upon combination of ME-344 and VEN in NSGS mice bearing parental or AraC-resistant MV4-11 leukemia. This study demonstrates that ME-344 enhances VEN antileukemic activity against preclinical models of AML by suppressing OXPHOS and/or purine biosynthesis.

5.
Cancer Drug Resist ; 6(1): 138-150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065866

RESUMO

In response to the changing availability of nutrients and oxygen in the bone marrow microenvironment, acute myeloid leukemia (AML) cells continuously adjust their metabolic state. To meet the biochemical demands of their increased proliferation, AML cells strongly depend on mitochondrial oxidative phosphorylation (OXPHOS). Recent data indicate that a subset of AML cells remains quiescent and survives through metabolic activation of fatty acid oxidation (FAO), which causes uncoupling of mitochondrial OXPHOS and facilitates chemoresistance. For targeting these metabolic vulnerabilities of AML cells, inhibitors of OXPHOS and FAO have been developed and investigated for their therapeutic potential. Recent experimental and clinical evidence has revealed that drug-resistant AML cells and leukemic stem cells rewire metabolic pathways through interaction with BM stromal cells, enabling them to acquire resistance against OXPHOS and FAO inhibitors. These acquired resistance mechanisms compensate for the metabolic targeting by inhibitors. Several chemotherapy/targeted therapy regimens in combination with OXPHOS and FAO inhibitors are under development to target these compensatory pathways.

6.
Haematologica ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37078252

RESUMO

BCL-XL and BCL-2 are key anti-apoptotic proteins and validated cancer targets. 753B is a novel BCL-XL/BCL-2 proteolysis targeting chimera (PROTAC) that targets both BCL-XL and BCL-2 to the Von Hippel-Lindau (VHL) E3 ligase, leading to BCL-XL/BCL-2 ubiquitination and degradation selectively in cells expressing VHL. Because platelets lack VHL expression, 753B spares on-target platelet toxicity caused by the first generation dual BCL-XL/BCL-2 inhibitor navitoclax (ABT-263). Here, we report pre-clinical single-agent activity of 753B against different leukemia subsets. 753B effectively reduced cell viability and induced dose-dependent degradation of BCL-XL and BCL-2 in a subset of hematopoietic cell lines, AML primary samples and in vivo PDX AML model. We further demonstrated the senolytic activity of 753B which enhanced the efficacy of chemotherapy by targeting chemotherapy-induced cellular senescence. These results provide a pre-clinical rationale for the utility of 753B in AML therapy, and suggest that 753B could produce an added therapeutic benefit by overcoming cellular senescence-induced chemoresistance when combined with chemotherapy.

7.
Cancers (Basel) ; 15(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37046645

RESUMO

The BCL-2 inhibitor venetoclax improves survival for adult patients with acute myeloid leukemia (AML) in combination with lower-intensity therapies, but its benefit in pediatric patients with AML remains unclear. We retrospectively reviewed two Texas Medical Center institutions' experience with venetoclax in 43 pediatric patients with AML; median age 17 years (range, 0.6-21). This population was highly refractory; 44% of patients (n = 19) had ≥3 prior lines of therapy, 37% (n = 16) had received a prior bone marrow transplant, and 81% (n = 35) had unfavorable genetics KMT2A (n = 17), WT1 (n = 13), FLT3-ITD (n = 10), monosomy 7 (n = 5), TP53 (n = 3), Inv(3) (n = 3), IDH1/2 (n = 2), monosomy 5 (n = 1), NUP98 (n = 1) and ASXL1 (n = 1). The majority (86%) received venetoclax with a hypomethylating agent. Grade 3 or 4 adverse events included febrile neutropenia in 37% (n = 16), non-febrile neutropenia in 12% (n = 5), anemia in 14% (n = 6), and thrombocytopenia in 14% (n = 6). Of 40 patients evaluable for response, 10 patients (25%) achieved complete response (CR), 6 patients (15%) achieved CR with incomplete blood count recovery (CRi), and 2 patients (5%) had a partial response, (CR/CRi composite = 40%; ORR = 45%). Eleven (25%) patients received a hematopoietic stem cell transplant following venetoclax combination therapy, and six remain alive (median follow-up time 33.6 months). Median event-free survival and overall survival duration was 3.7 months and 8.7 months, respectively. Our findings suggest that in pediatric patients with AML, venetoclax is well-tolerated, with a safety profile similar to that in adults. More studies are needed to establish an optimal venetoclax-based regimen for the pediatric population.

8.
Leukemia ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076694

RESUMO

LCK is a novel therapeutic target in ~40% of T-cell acute lymphoblastic leukemia (T-ALL), and dasatinib and ponatinib can act as LCK inhibitors with therapeutic effects. We herein report a comprehensive preclinical pharmacokinetic and pharmacodynamic evaluation of dasatinib and ponatinib in LCK-activated T-ALL. In 51 human T-ALL cases, these two drugs showed similar patterns of cytotoxic activity, with ponatinib being slightly more potent. Given orally in mice, ponatinib was associated with slower clearance with a longer Tmax and higher AUC0-24 h, although maximum pLCK inhibition was comparable between the two drugs. After establishing the exposure-to-response models, we simulated the steady-state pLCK inhibitory effects of each drug at currently approved dosages in humans: dasatinib at 140 mg and ponatinib at 45 mg once daily are both sufficient to achieve >50% pLCK inhibition for 13.0 and 13.9 h/day, respectively, comparable to pharmacodynamic profiles of these agents in BCR::ABL1 leukemias. Moreover, we developed a dasatinib-resistant T-ALL cell line model with LCK T316I mutation, in which ponatinib retained partial activity against LCK. In conclusion, we described the pharmacokinetic and pharmacodynamic profiles of dasatinib and ponatinib as LCK inhibitors in T-ALL, providing critical data for the development of human trials of these agents.

9.
Blood Cancer Discov ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37102976

RESUMO

The safety and efficacy of combining the IDH1 inhibitor ivosidenib (IVO) with the BCL2 inhibitor venetoclax (VEN; IVO+VEN) +/- azacitidine (AZA; IVO+VEN+AZA) was evaluated in four cohorts of patients with IDH1-mutated myeloid malignancies (n=31). Most (91%) adverse events were grade 1 or 2. The maximal tolerated dose was not reached. Composite complete remission with IVO+VEN+AZA vs. IVO+VEN was 90% vs. 83%. Among MRD-evaluable patients (N=16) 63% attained MRD-negative remissions; IDH1 mutation clearance occurred in 64% of patients receiving ≥5 treatment cycles (N=14). Median EFS and OS were 36 (95% CI: 23-NR) and 42 (95% CI: 42-NR) months. Patients with signaling gene mutations appeared to particularly benefit from the triplet regimen. Longitudinal single-cell proteogenomic analyses linked co-occurring mutations, anti-apoptotic protein expression, and cell maturation to therapeutic sensitivity of IDH1-mutated clones. No IDH isoform switching or second-site IDH1 mutations were observed, indicating combination therapy may overcome established resistance pathways to single-agent IVO.

10.
Blood Adv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37104058

RESUMO

Although venetoclax-based lower-intensity regimens have greatly improved outcomes for older adults with acute myeloid leukemia (AML) who are unfit for intensive chemotherapy, the optimal induction for older patients with newly diagnosed AML who are suitable candidates for hematopoietic stem cell transplant (HSCT) is controversial. We retrospectively analyzed post-HSCT outcomes of 127 patients ≥60 years of age who received induction therapy at our institution with intensive chemotherapy (IC, n=44), lower-intensity therapy (LIT) without venetoclax (n=29) or LIT with venetoclax (n=54) and who underwent allogeneic HSCT in first remission. The 2-year relapse-free survival with LIT with venetoclax was 60%, versus 54% with IC and 41% with LIT without venetoclax, and 2-year overall survival for LIT with venetoclax was 72%, versus 58% with IC and 41% with LIT without venetoclax. The benefit to LIT with venetoclax induction was greatest in patients with adverse-risk AML (2-year OS 74%, 46%, and 29%, respectively). Induction with LIT, with or without venetoclax, was associated with the lowest rate of non-relapse mortality (NRM) (2-year NRM 17% versus 27% with IC; P=0.04). By multivariate analysis, type of induction therapy did not significantly impact any of the post-HSCT outcomes evaluated; hematopoietic cell transplantation-specific comorbidity index (HCT-CI) was the only factor that independently predicted for RFS and OS. LIT plus venetoclax followed by HSCT is feasible treatment strategy in older, fit, and HSCT-eligible patients with newly diagnosed AML and may be particularly beneficial in those with adverse-risk disease.

11.
Proc Natl Acad Sci U S A ; 120(16): e2220134120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036970

RESUMO

Bromo- and extra-terminal domain inhibitors (BETi) have exhibited therapeutic activities in many cancers. However, the mechanisms controlling BETi response and resistance are not well understood. We conducted genome-wide loss-of-function CRISPR screens using BETi-treated KMT2A-rearranged (KMT2A-r) cell lines. We revealed that Speckle-type POZ protein (SPOP) gene (Speckle Type BTB/POZ Protein) deficiency caused significant BETi resistance, which was further validated in cell lines and xenograft models. Proteomics analysis and a kinase-vulnerability CRISPR screen indicated that cells treated with BETi are sensitive to GSK3 perturbation. Pharmaceutical inhibition of GSK3 reversed the BETi-resistance phenotype. Based on this observation, a combination therapy regimen inhibiting both BET and GSK3 was developed to impede KMT2A-r leukemia progression in patient-derived xenografts in vivo. Our results revealed molecular mechanisms underlying BETi resistance and a promising combination treatment regimen of ABBV-744 and CHIR-98014 by utilizing unique ex vivo and in vivo KMT2A-r PDX models.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Leucemia , Humanos , Quinase 3 da Glicogênio Sintase/metabolismo , Linhagem Celular Tumoral , Leucemia/tratamento farmacológico , Leucemia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo
12.
Haematologica ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951163

RESUMO

Acute myeloid leukemia (AML) with inv(3)(q21q26.2)/t(3;3)(q21;q26.2) has a very poor prognosis. Determinants of clinical outcomes and optimal treatment remain uncertain. We retrospectively reviewed 108 cases of AML with inv(3)/t(3;3) and evaluated clinicopathological characteristics and clinical outcomes: 53 newly diagnosed (ND) AML and 55 relapsed/refractory (R/R) AML. Median age was 55 years. White blood cell (WBC) count ≥ 20 x 109/L and platelet count ≥ 140 x 109/L was observed in 25% and 32% of ND patients, respectively. Anomalies involving chromosome 7 were identified in 56% of patients. The most frequently mutated genes were SF3B1, PTPN11, NRAS, KRAS and ASXL1. In ND patients, the composite complete remission (CRc) rate was 46% overall; 46% with high-intensity treatments and 47% with low-intensity treatments. The 30-day mortality was 14% and 0%, with high- and low-intensity treatment, respectively. In R/R patients, the CRc rate was 14%. Venetoclax based-regimens were associated with a CRc rate of 33%. The 3-year overall survival (OS) was 8.8% and 7.1% in ND and R/R patients, respectively. The 3-year cumulative incidence of relapse was 81.7% overall. Older age, high WBC, high peripheral blast count, secondary AML and KRAS, ASXL1, DNMT3A mutations were associated with worse OS in univariable analyses. The 5-year OS rates were 44% and 6% with or without HSCT in CR1, respectively. AML with inv(3)/t(3;3) is associated with low CR rates, very high risk of relapse and dismal long-term survival. Intensive chemotherapy and HMA provide similar rates of remission and patients achieving CR benefit from HSCT in CR1.

13.
Cancer ; 129(12): 1856-1865, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36892949

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) with rearrangement of lysine methyltransferase 2a gene (KMT2Ar) is characterized by chemotherapy resistance and high rates of relapse. However, additional causes of treatment failure or early mortality have not been well-defined in this entity. METHODS: In a retrospective analysis, causes and rates of early mortality following induction treatment were compared between a cohort of adults with KMT2Ar AML (N = 172) and an age-matched cohort of patients with normal karyotype AML (N = 522). RESULTS: The 60-day mortality in patients with KMT2Ar AML was 15% compared with 7% with normal karyotype (p = .04). We found a significantly higher occurrence of major bleeding events (p = .005) and total bleeding events (p = .001) in KMT2Ar AML compared with diploid AML. Among evaluable patients with KMT2Ar AML, 93% exhibited overt disseminated intravascular coagulopathy compared with 54% of patients with a normal karyotype before death (p = .03). In a multivariate analysis, KMT2Ar and a monocytic phenotypic were the only independent predictors of any bleeding event in patients who died within 60 days (odds ratio, 3.5; 95% CI, 1.4-10.4; p = .03; odds ratio, 3.2; 95% CI, 1-1-9.4; p = .04, respectively). CONCLUSION: In conclusion, early recognition and aggressive management of disseminated intravascular coagulopathy and coagulopathy are important considerations that could mitigate the risk of death during induction treatment in KMT2Ar AML. PLAIN LANGUAGE SUMMARY: Acute myeloid leukemia (AML) with rearrangement of KMT2A is characterized by chemotherapy resistance and high rates of relapse. However, additional causes of treatment failure or early mortality have not been well-defined in this entity. In this article, that KMT2A-rearranged AML is demonstrably associated with higher early mortality and an increased risk of bleeding and coagulopathy, specifically, disseminated intravascular coagulation, compared with normal karyotype AML. These findings emphasize the importance of monitoring and mitigating coagulopathy in KMT2A-rearranged leukemia similar to what is done in acute promyelocytic leukemia.

15.
bioRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865225

RESUMO

DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover novel mechanisms through which MM cells overcome DNA damage, we investigated how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting ILF2, a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo an adaptive metabolic rewiring and rely on oxidative phosphorylation to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identified the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage and maintaining mitochondrial respiration. Our study revealed a novel vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation. STATEMENT OF SIGNIFICANCE: Metabolic reprogramming is a mechanism through which cancer cells maintain survival and become resistant to DNA-damaging therapy. Here, we show that targeting DNA2 is synthetically lethal in myeloma cells that undergo metabolic adaptation and rely on oxidative phosphorylation to maintain survival after DNA damage activation.

16.
Res Sq ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865338

RESUMO

Malignancies can become reliant on glutamine as an alternative energy source and as a facilitator of aberrant DNA methylation, thus implicating glutaminase (GLS) as a potential therapeutic target. We demonstrate preclinical synergy of telaglenastat (CB-839), a selective GLS inhibitor, when combined with azacytidine (AZA), in vitro and in vivo , followed by a phase Ib/II study of the combination in patients with advanced MDS. Treatment with telaglenastat/AZA led to an ORR of 70% with CR/mCRs in 53% patients and a median overall survival of 11.6 months. scRNAseq and flow cytometry demonstrated a myeloid differentiation program at the stem cell level in clinical responders. Expression of non-canonical glutamine transporter, SLC38A1, was found to be overexpressed in MDS stem cells; was associated with clinical responses to telaglenastat/AZA and predictive of worse prognosis in a large MDS cohort. These data demonstrate the safety and efficacy of a combined metabolic and epigenetic approach in MDS.

17.
Blood Adv ; 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884300

RESUMO

Acute myeloid leukemia (AML) can be treated with either high or low-intensity regimens. Highly sensitive assays for measurable residual disease (MRD) now allow for a more precise assessment of response quality. We hypothesized that treatment intensity may not be a key predictor of outcomes assuming an optimal response to therapy is achieved. We performed a single-center retrospective study including 635 patients with newly diagnosed AML responding to either intensive cytarabine/anthracycline-based chemotherapy (IA, n=385) or low-intensity venetoclax-based regimens (LOW + VEN, n=250) and who had adequate flow cytometry-based MRD testing performed at the time of best response. The median overall survival (OS) was 50.2, 18.2, 13.6, and 8.1 months for the IA MRD(-), LOW + VEN MRD(-), IA MRD(+), and LOW + VEN MRD(+) cohorts, respectively. The 2-year cumulative incidence of relapse (CIR) was 41.1%, 33.5%, 64.2%, and 59.9% for the IA MRD(-), LOW + VEN MRD(-), IA MRD(+), and LOW + VEN MRD(+) cohorts, respectively. The CIR was similar between patients within MRD categories irrespective of the treatment regimen received. The IA cohort was enriched for younger patients and more favorable AML cytogenetic/molecular categories. By multivariate analysis (MVA), age, best response (CR/CRi/MLFS), MRD status, and ELN 2017 risk remained significantly associated with OS, whereas best response, MRD status, and ELN 2017 risk were significantly associated with CIR. Treatment intensity was not significantly associated with either OS or CIR. Achievement of MRD-negative complete remission should be the key objective of AML therapy in both high- and low-intensity treatment regimens.

18.
Mol Cancer Res ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36787422

RESUMO

Despite effective new therapies, adaptive resistance remains the main obstacle in AML therapy. Autophagy induction is a key mechanism for adaptive resistance. Leukemic blasts at diagnosis express higher levels of the apical autophagy kinase ULK1 compared to normal hematopoietic cells. Exposure to chemotherapy and targeted agents upregulate ULK1, hence we hypothesize that developing ULK1 inhibitors may present the unique opportunity for clinical translation of autophagy inhibition. Accordingly, we demonstrate that ULK1 inhibition, by genetic and pharmacological means, suppresses treatment-induced autophagy, overcomes adaptive drug-resistance, and synergizes with chemotherapy and emerging anti-leukemia agents like venetoclax (ABT-199). The study next aims at exploring the underlying mechanisms. Mechanistically, ULK1 inhibition downregulates MCL1 anti-apoptotic gene, impairs mitochondrial function and downregulates components of the CD44-xCT system, resulting in impaired reactive oxygen species (ROS) mitigation, DNA damage and apoptosis. For further validation, several mouse models of AML were generated. In these mouse models, ULK1 deficiency impaired leukemic cell homing and engraftment, delayed disease progression and improved survival. Therefore, in the study we validated our hypothesis and identified ULK1 as an important mediator of adaptive resistance to therapy and an ideal candidate for combination therapy in AML. Therefore, we propose ULK1 inhibition as a therapeutically relevant treatment option to overcome adaptive drug-resistance in AML. Implications: ULK1 drives a cell-intrinsic adaptive resistance in AML and targeting ULK1 mediated autophagy can synergize with existing and emerging AML therapies to overcome drug-resistance and induce apoptosis.

20.
Nat Med ; 29(1): 115-126, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36658425

RESUMO

Although targeting oxidative phosphorylation (OXPHOS) is a rational anticancer strategy, clinical benefit with OXPHOS inhibitors has yet to be achieved. Here we advanced IACS-010759, a highly potent and selective small-molecule complex I inhibitor, into two dose-escalation phase I trials in patients with relapsed/refractory acute myeloid leukemia (NCT02882321, n = 17) and advanced solid tumors (NCT03291938, n = 23). The primary endpoints were safety, tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D) of IACS-010759. The PK, PD, and preliminary antitumor activities of IACS-010759 in patients were also evaluated as secondary endpoints in both clinical trials. IACS-010759 had a narrow therapeutic index with emergent dose-limiting toxicities, including elevated blood lactate and neurotoxicity, which obstructed efforts to maintain target exposure. Consequently no RP2D was established, only modest target inhibition and limited antitumor activity were observed at tolerated doses, and both trials were discontinued. Reverse translational studies in mice demonstrated that IACS-010759 induced behavioral and physiological changes indicative of peripheral neuropathy, which were minimized with the coadministration of a histone deacetylase 6 inhibitor. Additional studies are needed to elucidate the association between OXPHOS inhibition and neurotoxicity, and caution is warranted in the continued development of complex I inhibitors as antitumor agents.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Neoplasias , Animais , Camundongos , Fosforilação Oxidativa , Neoplasias/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Antineoplásicos/efeitos adversos , Inibidores de Histona Desacetilases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...