Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 24: 101198, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31048245

RESUMO

Macrophages (Mφ) are central players in mediating proinflammatory and immunomodulatory functions. Unchecked Mφ activities contribute to pathology across many diseases, including those caused by infectious pathogens and metabolic disorders. A fine balance of Mφ responses is crucial, which may be achieved by enforcing appropriate bioenergetics pathways. Metabolism serves as the provider of energy, substrates, and byproducts that support differential Mφ characteristics. The metabolic properties that control the polarization and response of Mφ remain to be fully uncovered for use in managing infectious diseases. Here, we review the various metabolic states in Mφ and how they influence the cell function.


Assuntos
Metabolismo Energético , Interações Hospedeiro-Patógeno , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Biomarcadores , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo
2.
Front Immunol ; 9: 202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29503646

RESUMO

Metabolism provides substrates for reactive oxygen species (ROS) and nitric oxide (NO) generation, which are a part of the macrophage (Mφ) anti-microbial response. Mφs infected with Trypanosoma cruzi (Tc) produce insufficient levels of oxidative species and lower levels of glycolysis compared to classical Mφs. How Mφs fail to elicit a potent ROS/NO response during infection and its link to glycolysis is unknown. Herein, we evaluated for ROS, NO, and cytokine production in the presence of metabolic modulators of glycolysis and the Krebs cycle. Metabolic status was analyzed by Seahorse Flux Analyzer and mass spectrometry and validated by RNAi. Tc infection of RAW264.7 or bone marrow-derived Mφs elicited a substantial increase in peroxisome proliferator-activated receptor (PPAR)-α expression and pro-inflammatory cytokine release, and moderate levels of ROS/NO by 18 h. Interferon (IFN)-γ addition enhanced the Tc-induced ROS/NO release and shut down mitochondrial respiration to the levels noted in classical Mφs. Inhibition of PPAR-α attenuated the ROS/NO response and was insufficient for complete metabolic shift. Deprivation of glucose and inhibition of pyruvate transport showed that Krebs cycle and glycolysis support ROS/NO generation in Tc + IFN-γ stimulated Mφs. Metabolic profiling and RNAi studies showed that glycolysis-pentose phosphate pathway (PPP) at 6-phosphogluconate dehydrogenase was essential for ROS/NO response and control of parasite replication in Mφ. We conclude that IFN-γ, but not inhibition of PPAR-α, supports metabolic upregulation of glycolytic-PPP for eliciting potent ROS/NO response in Tc-infected Mφs. Chemical analogs enhancing the glucose-PPP will be beneficial in controlling Tc replication and dissemination by Mφs.


Assuntos
Cardiomiopatia Chagásica/imunologia , Interações Hospedeiro-Parasita/imunologia , Macrófagos/imunologia , Via de Pentose Fosfato/imunologia , Trypanosoma cruzi/imunologia , Animais , Cardiomiopatia Chagásica/parasitologia , Modelos Animais de Doenças , Humanos , Interferon gama/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Knockout , Óxido Nítrico/imunologia , Óxido Nítrico/metabolismo , PPAR alfa/genética , PPAR alfa/imunologia , Cultura Primária de Células , Células RAW 264.7 , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
3.
Front Microbiol ; 9: 3320, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30697201

RESUMO

Trypanosoma cruzi (Tc) infection causes Chagas disease (ChD) presented by dilated cardiomyopathy and heart failure. During infection, oxidative and nitrosative stresses are elicited by the immune cells for control the pathogen; however, excess nitric oxide and superoxide production can result in cysteine S-nitrosylation (SNO) of host proteins that affects cellular homeostasis and may contribute to disease development. To identify the proteins with changes in SNO modification levels as a hallmark of ChD, we obtained peripheral blood mononuclear cells (PBMC) from seronegative, normal healthy (NH, n = 30) subjects, and from seropositive clinically asymptomatic (ChD CA, n = 25) or clinically symptomatic (ChD CS, n = 28) ChD patients. All samples were treated (Asc+) or not-treated (Asc-) with ascorbate (reduces nitrosylated thiols), labeled with the thiol-labeling BODIPY FL-maleimide dye, resolved by two-dimensional electrophoresis (total 166 gels), and the protein spots that yielded significant differences in abundance or SNO level at p-value of ≤ 0.05 t-test/Welch/BH were identified by MALDI-TOF/TOF MS or OrbiTrap LC-MS/MS. Targeted analysis of a new cohort of PBMC samples (n = 10-14/group) was conducted to verify the differential abundance/SNO levels of two of the proteins in ChD (vs. NH) subjects. The multivariate adaptive regression splines (MARS) modeling, comparing differences in relative SNO level (Asc-/Asc+ ratio) of the protein spots between any two groups yielded SNO biomarkers that exhibited ≥90% prediction success in classifying ChD CA (582-KRT1 and 884-TPM3) and ChD CS (426-PNP, 582-KRT1, 486-ALB, 662-ACTB) patients from NH controls. Ingenuity Pathway Analysis (IPA) of the SNO proteome dataset normalized to changes in protein abundance suggested the proteins belonging to the signaling networks of cell death and the recruitment and migration of immune cells were most affected in ChD CA and ChD CS (vs. NH) subjects. We propose that SNO modification of the select panel of proteins identified in this study have the potential to identify ChD severity in seropositive individuals exposed to Tc infection.

4.
J Innate Immun ; 9(2): 203-216, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27902980

RESUMO

BACKGROUND: Chronic inflammation and oxidative stress are hallmarks of chagasic cardiomyopathy (CCM). In this study, we determined if microparticles (MPs) generated during Trypanosoma cruzi (Tc) infection carry the host's signature of the inflammatory/oxidative state and provide information regarding the progression of clinical disease. METHODS: MPs were harvested from supernatants of human peripheral blood mononuclear cells in vitro incubated with Tc (control: LPS treated), plasma of seropositive humans with a clinically asymptomatic (CA) or symptomatic (CS) disease state (vs. normal/healthy [NH] controls), and plasma of mice immunized with a protective vaccine before challenge infection (control: unvaccinated/infected). Macrophages (mφs) were incubated with MPs, and we probed the gene expression profile using the inflammatory signaling cascade and cytokine/chemokine arrays, phenotypic markers of mφ activation by flow cytometry, cytokine profile by means of an ELISA and Bioplex assay, and oxidative/nitrosative stress and mitotoxicity by means of colorimetric and fluorometric assays. RESULTS: Tc- and LPS-induced MPs stimulated proliferation, inflammatory gene expression profile, and nitric oxide (∙NO) release in human THP-1 mφs. LPS-MPs were more immunostimulatory than Tc-MPs. Endothelial cells, T lymphocytes, and mφs were the major source of MPs shed in the plasma of chagasic humans and experimentally infected mice. The CS and CA (vs. NH) MPs elicited >2-fold increase in NO and mitochondrial oxidative stress in THP-1 mφs; however, CS (vs. CA) MPs elicited a more pronounced and disease-state-specific inflammatory gene expression profile (IKBKB, NR3C1, and TIRAP vs. CCR4, EGR2, and CCL3), cytokine release (IL-2 + IFN-γ > GCSF), and surface markers of mφ activation (CD14 and CD16). The circulatory MPs of nonvaccinated/infected mice induced 7.5-fold and 40% increases in ∙NO and IFN-γ production, respectively, while these responses were abolished when RAW264.7 mφs were incubated with circulatory MPs of vaccinated/infected mice. CONCLUSION: Circulating MPs reflect in vivo levels of an oxidative, nitrosative, and inflammatory state, and have potential utility in evaluating disease severity and the efficacy of vaccines and drug therapies against CCM.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Doença de Chagas/imunologia , Inflamação/imunologia , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Trypanosoma cruzi/imunologia , Vacinas/imunologia , Animais , Doenças Assintomáticas , Linhagem Celular , Micropartículas Derivadas de Células/imunologia , Citocinas/metabolismo , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Estresse Oxidativo , Vacinação
5.
Infect Immun ; 84(12): 3527-3541, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27698021

RESUMO

Trypanosoma cruzi is the causative agent of chronic chagasic cardiomyopathy. Why macrophages (mφs), the early responders to infection, fail to achieve parasite clearance is not known. Mouse (RAW 264.7) and human (THP-1 and primary) mφs were infected for 3 h and 18 h with T. cruzi TcI isolates, SylvioX10/4 (SYL, virulent) and TCC (nonpathogenic), which represent mφ stimulation and infection states, respectively. Mφs incubated with lipopolysaccharide and gamma interferon (LPS/IFN-γ) and with interleukin-4 (IL-4) were used as controls. We monitored the cytokine profile (using enzyme-linked immunosorbent assay [ELISA]), reactive oxygen species (ROS; fluorescent probes), nitric oxide (·NO; Griess assay), and metabolic state using a custom-designed mitoxosome array and Seahorse XF24 Analyzer. LPS/IFN-γ treatment of mφs elicited a potent increase in production of tumor necrosis alpha (TNF-α) at 3 h and of ROS and ·NO by 18 h. Upon SYL infection, murine mφs elicited an inflammatory cytokine profile (TNF-α ≫ TGF-ß + IL-10) and low levels of ·NO and ROS production. LPS/IFN-γ treatment resulted in the inhibition of oxidative metabolism at the gene expression and functional levels and a switch to the glycolytic pathway in mφs, while IL-4-treated mφs utilized oxidative metabolism to meet energy demands. SYL infection resulted in an intermediate functional metabolic state with increased mitoxosome gene expression and glycolysis, and IFN-γ addition shut down the oxidative metabolism in SYL-infected mφs. Further, TCC- and SYL-stimulated mφs exhibited similar levels of cell proliferation and production of TNF-α and ROS, while TCC-stimulated mφs exhibited up to 2-fold-higher levels of oxidative metabolism and ·NO production than SYL-infected mφs. Inhibiting ATP-coupled O2 consumption suppressed the ·NO generation in SYL-infected mφs. Mitochondrial oxygen consumption constitutes a mechanism for stimulating ·NO production in mφs during T. cruzi infection. Enhancing the oxidative metabolism provides an opportunity for increased ·NO production and pathogen clearance by mφs to limit disease progression.


Assuntos
Macrófagos/metabolismo , Macrófagos/parasitologia , Óxido Nítrico/biossíntese , Trypanosoma cruzi/fisiologia , Animais , Linhagem Celular , Sobrevivência Celular , Regulação da Expressão Gênica/fisiologia , Genes Mitocondriais/fisiologia , Camundongos , Espécies Reativas de Oxigênio
6.
PLoS Pathog ; 12(10): e1005954, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27764247

RESUMO

Chronic chagasic cardiomyopathy (CCM) is presented by increased oxidative/inflammatory stress and decreased mitochondrial bioenergetics. SIRT1 senses the redox changes and integrates mitochondrial metabolism and inflammation; and SIRT1 deficiency may be a major determinant in CCM. To test this, C57BL/6 mice were infected with Trypanosoma cruzi (Tc), treated with SIRT1 agonists (resveratrol or SRT1720), and monitored during chronic phase (~150 days post-infection). Resveratrol treatment was partially beneficial in controlling the pathologic processes in Chagas disease. The 3-weeks SRT1720 therapy provided significant benefits in restoring the left ventricular (LV) function (stroke volume, cardiac output, ejection fraction etc.) in chagasic mice, though cardiac hypertrophy presented by increased thickness of the interventricular septum and LV posterior wall, increased LV mass, and disproportionate synthesis of collagens was not controlled. SRT1720 treatment preserved the myocardial SIRT1 activity and PGC1α deacetylation (active-form) that were decreased by 53% and 9-fold respectively, in chagasic mice. Yet, SIRT1/PGC1α-dependent mitochondrial biogenesis (i.e., mitochondrial DNA content, and expression of subunits of the respiratory complexes and mtDNA replication machinery) was not improved in chronically-infected/SRT1720-treated mice. Instead, SRT1720 therapy resulted in 2-10-fold inhibition of Tc-induced oxidative (H2O2 and advanced oxidation protein products), nitrosative (inducible nitric oxide synthase, 4-hydroxynonenal, 3-nitrotyrosine), and inflammatory (IFNγ, IL1ß, IL6 and TNFα) stress and inflammatory infiltrate in chagasic myocardium. These benefits were delivered through SIRT1-dependent inhibition of NFκB transcriptional activity. We conclude that Tc inhibition of SIRT1/PGC1α activity was not a key mechanism in mitochondrial biogenesis defects during Chagas disease. SRT1720-dependent SIRT1 activation led to suppression of NFκB transcriptional activity, and subsequently, oxidative/nitrosative and inflammatory pathology were subdued, and antioxidant status and LV function were enhanced in chronic chagasic cardiomyopathy.


Assuntos
Cardiomiopatia Chagásica/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Animais , Antioxidantes/farmacologia , Western Blotting , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Resveratrol , Transdução de Sinais/fisiologia , Sirtuína 1/efeitos dos fármacos , Transcriptoma , Trypanosoma cruzi
7.
Int J Proteomics ; 2016: 1384523, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27635260

RESUMO

Nitric oxide (NO) protects the heart against ischemic injury; however, NO- and superoxide-dependent S-nitrosylation (S-NO) of cysteines can affect function of target proteins and play a role in disease outcome. We employed 2D-GE with thiol-labeling FL-maleimide dye and MALDI-TOF MS/MS to capture the quantitative changes in abundance and S-NO proteome of HF patients (versus healthy controls, n = 30/group). We identified 93 differentially abundant (59-increased/34-decreased) and 111 S-NO-modified (63-increased/48-decreased) protein spots, respectively, in HF subjects (versus controls, fold-change | ≥1.5|, p ≤ 0.05). Ingenuity pathway analysis of proteome datasets suggested that the pathways involved in phagocytes' migration, free radical production, and cell death were activated and fatty acid metabolism was decreased in HF subjects. Multivariate adaptive regression splines modeling of datasets identified a panel of proteins that will provide >90% prediction success in classifying HF subjects. Proteomic profiling identified ATP-synthase, thrombospondin-1 (THBS1), and vinculin (VCL) as top differentially abundant and S-NO-modified proteins, and these proteins were verified by Western blotting and ELISA in different set of HF subjects. We conclude that differential abundance and S-NO modification of proteins serve as a mechanism in regulating cell viability and free radical production, and THBS1 and VCL evaluation will potentially be useful in the prediction of heart failure.

8.
Infect Immun ; 84(6): 1842-1856, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068090

RESUMO

Trypanosoma cruzi species is categorized into six discrete typing units (TcI to TcVI) of which TcI is most abundantly noted in the sylvatic transmission cycle and considered the major cause of human disease. In our study, the TcI strains Colombiana (COL), SylvioX10/4 (SYL), and a cultured clone (TCC) exhibited different biological behavior in a murine model, ranging from high parasitemia and symptomatic cardiomyopathy (SYL), mild parasitemia and high tissue tropism (COL), to no pathogenicity (TCC). Proteomic profiling of the insect (epimastigote) and infective (trypomastigote) forms by two-dimensional gel electrophoresis/matrix-assisted laser desorption ionization-time of flight mass spectrometry, followed by functional annotation of the differential proteome data sets (≥2-fold change, P < 0.05), showed that several proteins involved in (i) cytoskeletal assembly and remodeling, essential for flagellar wave frequency and amplitude and forward motility of the parasite, and (ii) the parasite-specific antioxidant network were enhanced in COL and SYL (versus TCC) trypomastigotes. Western blotting confirmed the enhanced protein levels of cytosolic and mitochondrial tryparedoxin peroxidases and their substrate (tryparedoxin) and iron superoxide dismutase in COL and SYL (versus TCC) trypomastigotes. Further, COL and SYL (but not TCC) were resistant to exogenous treatment with stable oxidants (H2O2 and peroxynitrite [ONOO(-)]) and dampened the intracellular superoxide and nitric oxide response in macrophages, and thus these isolates escaped from macrophages. Our findings suggest that protein expression conducive to increase in motility and control of macrophage-derived free radicals provides survival and persistence benefits to TcI isolates of T. cruzi.


Assuntos
Antioxidantes/metabolismo , Doença de Chagas/genética , Estágios do Ciclo de Vida/genética , Macrófagos/metabolismo , Proteínas de Protozoários/genética , Trypanosoma cruzi/patogenicidade , Animais , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Humanos , Peróxido de Hidrogênio/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Parasitemia/genética , Parasitemia/metabolismo , Parasitemia/parasitologia , Peroxidases/genética , Peroxidases/metabolismo , Ácido Peroxinitroso/farmacologia , Proteínas de Protozoários/metabolismo , Índice de Gravidade de Doença , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento
9.
PLoS Negl Trop Dis ; 10(2): e0004490, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26919708

RESUMO

Trypanosoma cruzi (Tc) infection causes chagasic cardiomyopathy; however, why 30-40% of the patients develop clinical disease is not known. To discover the pathomechanisms in disease progression, we obtained the proteome signature of peripheral blood mononuclear cells (PBMCs) of normal healthy controls (N/H, n = 30) and subjects that were seropositive for Tc-specific antibodies, but were clinically asymptomatic (C/A, n = 25) or clinically symptomatic (C/S, n = 28) with cardiac involvement and left ventricular dysfunction. Protein samples were labeled with BODIPY FL-maleimide (dynamic range: > 4 orders of magnitude, detection limit: 5 f-mol) and resolved by two-dimensional gel electrophoresis (2D-GE). After normalizing the gel images, protein spots that exhibited differential abundance in any of the two groups were analyzed by mass spectrometry, and searched against UniProt human database for protein identification. We found 213 and 199 protein spots (fold change: |≥ 1.5|, p< 0.05) were differentially abundant in C/A and C/S individuals, respectively, with respect to N/H controls. Ingenuity Pathway Analysis (IPA) of PBMCs proteome dataset identified an increase in disorganization of cytoskeletal assembly and recruitment/activation and migration of immune cells in all chagasic subjects, though the invasion capacity of cells was decreased in C/S individuals. IPA predicted with high probability a decline in cell survival and free radical scavenging capacity in C/S (but not C/A) subjects. The MYC/SP1 transcription factors that regulate hypoxia and oxidative/inflammatory stress were predicted to be key targets in the context of control of Chagas disease severity. Further, MARS-modeling identified a panel of proteins that had >93% prediction success in classifying infected individuals with no disease and those with cardiac involvement and LV dysfunction. In conclusion, we have identified molecular pathways and a panel of proteins that could aid in detecting seropositive individuals at risk of developing cardiomyopathy.


Assuntos
Cardiomiopatia Chagásica/metabolismo , Leucócitos Mononucleares/química , Proteínas/química , Proteoma/química , Cardiomiopatia Chagásica/parasitologia , Doença Crônica , Eletroforese em Gel Bidimensional , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/parasitologia , Proteínas/metabolismo , Proteoma/metabolismo , Proteômica , Trypanosoma cruzi/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...