Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33433559

RESUMO

BACKGROUND: National guidelines promote physical activity to prevent cardiovascular disease (CVD), yet no randomized controlled trial has tested whether physical activity reduces prevent CVD. METHODS: The Women's Health Initiative (WHI) Strong and Healthy (WHISH) pragmatic trial used a randomized consent design to assign women for whom cardiovascular outcomes were available through WHI data collection (N=18,985) or linkage to the Centers for Medicare and Medicaid Services (N30,346), to a physical activity intervention or "usual activity" comparison, stratified by ages 68-99 years (in tertiles), U.S. geographic region, and outcomes data source. Women assigned to the intervention could "opt out" after receiving initial physical activity materials. Intervention materials applied evidence-based behavioral science principles to promote current national recommendations for older Americans The intervention was adapted to participant input regarding preferences, resources, barriers and motivational drivers and was targetted for three categories of women at lower, middle or higher levels of self-reported physical functioning and physical activity. Physical activity was assessed in both arms through annual questionnaires. The primary outcome is major cardiovascular events, specifically myocardial infarction, stroke, or CVD death; primary safety outcomes are hip fracture and non-CVD death. The trial is monitored annually by an independent Data Safety and Monitoring Board. Final analyses will be based on intention-to-treat in all randomized participants, regardless of intervention engagement. RESULTS: The 49,331 randomized participants had a mean baseline age of 79.7 years; 84.3% were white, 9.2% black, 3.3% Hispanic, 1.9% Asian/Pacific Islander, 0.3% Native American, and 1% were of unknown race/ethnicity. The mean baseline RAND-36 physical function score was 71.6 (± 25.2 SD). There were no differences between Intervention (N=24,657) and Control (N=24,674) at baseline for age, race/ethnicity, current smoking (2.5%), use of blood pressure or lipid-lowering medications, body mass index, physical function, physical activity, or prior CVD (10.1%). CONCLUSION: The WHISH trial is rigorously testing whether a physical activity intervention reduces major CV events in a large, diverse cohort of older women.

2.
N Engl J Med ; 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33471974

RESUMO

BACKGROUND: Population-based estimates of the risk of breast cancer associated with germline pathogenic variants in cancer-predisposition genes are critically needed for risk assessment and management in women with inherited pathogenic variants. METHODS: In a population-based case-control study, we performed sequencing using a custom multigene amplicon-based panel to identify germline pathogenic variants in 28 cancer-predisposition genes among 32,247 women with breast cancer (case patients) and 32,544 unaffected women (controls) from population-based studies in the Cancer Risk Estimates Related to Susceptibility (CARRIERS) consortium. Associations between pathogenic variants in each gene and the risk of breast cancer were assessed. RESULTS: Pathogenic variants in 12 established breast cancer-predisposition genes were detected in 5.03% of case patients and in 1.63% of controls. Pathogenic variants in BRCA1 and BRCA2 were associated with a high risk of breast cancer, with odds ratios of 7.62 (95% confidence interval [CI], 5.33 to 11.27) and 5.23 (95% CI, 4.09 to 6.77), respectively. Pathogenic variants in PALB2 were associated with a moderate risk (odds ratio, 3.83; 95% CI, 2.68 to 5.63). Pathogenic variants in BARD1, RAD51C, and RAD51D were associated with increased risks of estrogen receptor-negative breast cancer and triple-negative breast cancer, whereas pathogenic variants in ATM, CDH1, and CHEK2 were associated with an increased risk of estrogen receptor-positive breast cancer. Pathogenic variants in 16 candidate breast cancer-predisposition genes, including the c.657_661del5 founder pathogenic variant in NBN, were not associated with an increased risk of breast cancer. CONCLUSIONS: This study provides estimates of the prevalence and risk of breast cancer associated with pathogenic variants in known breast cancer-predisposition genes in the U.S. population. These estimates can inform cancer testing and screening and improve clinical management strategies for women in the general population with inherited pathogenic variants in these genes. (Funded by the National Institutes of Health and the Breast Cancer Research Foundation.).

3.
Circulation ; 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33161765

RESUMO

Background: Premature menopause is an independent risk factor for cardiovascular disease in women, but mechanisms underlying this association remain unclear. Clonal hematopoiesis of indeterminate potential (CHIP), the age-related expansion of hematopoietic cells with leukemogenic mutations without detectable malignancy, is associated with accelerated atherosclerosis. Whether premature menopause is associated with CHIP is unknown. Methods: We included postmenopausal women from the UK Biobank (N=11,495) aged 40-70 years with whole exome sequences and from the Women's Health Initiative (WHI, N=8,111) aged 50-79 years with whole genome sequences. Premature menopause was defined as natural or surgical menopause occurring before age 40 years. Co-primary outcomes were the presence of (1) any CHIP and (2) CHIP with variant allele frequency (VAF) >0.1. Logistic regression tested the association of premature menopause with CHIP, adjusted for age, race, the first 10 principal components of ancestry, smoking, diabetes mellitus, and hormone therapy use. Secondary analyses considered natural vs. surgical premature menopause and gene-specific CHIP subtypes. Multivariable-adjusted Cox models tested the association between CHIP and incident coronary artery disease (CAD). Results: The sample included 19,606 women, including 418 (2.1%) with natural premature menopause and 887 (4.5%) with surgical premature menopause. Across cohorts, CHIP prevalence in postmenopausal women with vs. without a history of premature menopause was 8.8% vs. 5.5% (P<0.001), respectively. After multivariable adjustment, premature menopause was independently associated with CHIP (all CHIP: OR 1.36, 95% 1.10-1.68, P=0.004; CHIP with VAF >0.1: OR 1.40, 95% CI 1.10-1.79, P=0.007). Associations were larger for natural premature menopause (all CHIP: OR 1.73, 95% CI 1.23-2.44, P=0.001; CHIP with VAF >0.1: OR 1.91, 95% CI 1.30-2.80, P<0.001) but smaller and non-significant for surgical premature menopause. In gene-specific analyses, only DNMT3A CHIP was significantly associated with premature menopause. Among postmenopausal middle-aged women, CHIP was independently associated with incident coronary artery disease (HR associated with all CHIP: 1.36, 95% CI 1.07-1.73, P=0.012; HR associated with CHIP with VAF >0.1: 1.48, 95% CI 1.13-1.94, P=0.005). Conclusions: Premature menopause, especially natural premature menopause, is independently associated with CHIP among postmenopausal women. Natural premature menopause may serve as a risk signal for predilection to develop CHIP and CHIP-associated cardiovascular disease.

4.
Cancer Epidemiol Biomarkers Prev ; 29(12): 2735-2739, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32967863

RESUMO

BACKGROUND: Whether circulating polyunsaturated fatty acid (PUFA) levels are associated with pancreatic cancer risk is uncertain. Mendelian randomization (MR) represents a study design using genetic instruments to better characterize the relationship between exposure and outcome. METHODS: We utilized data from genome-wide association studies within the Pancreatic Cancer Cohort Consortium and Pancreatic Cancer Case-Control Consortium, involving approximately 9,269 cases and 12,530 controls of European descent, to evaluate associations between pancreatic cancer risk and genetically predicted plasma n-6 PUFA levels. Conventional MR analyses were performed using individual-level and summary-level data. RESULTS: Using genetic instruments, we did not find evidence of associations between genetically predicted plasma n-6 PUFA levels and pancreatic cancer risk [estimates per one SD increase in each PUFA-specific weighted genetic score using summary statistics: linoleic acid odds ratio (OR) = 1.00, 95% confidence interval (CI) = 0.98-1.02; arachidonic acid OR = 1.00, 95% CI = 0.99-1.01; and dihomo-gamma-linolenic acid OR = 0.95, 95% CI = 0.87-1.02]. The OR estimates remained virtually unchanged after adjustment for covariates, using individual-level data or summary statistics, or stratification by age and sex. CONCLUSIONS: Our results suggest that variations of genetically determined plasma n-6 PUFA levels are not associated with pancreatic cancer risk. IMPACT: These results suggest that modifying n-6 PUFA levels through food sources or supplementation may not influence risk of pancreatic cancer.

5.
Alzheimers Dement ; 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966694

RESUMO

INTRODUCTION: Recent studies suggest that both sex-specific genetic risk factors and those shared between dementia and stroke are involved in dementia pathogenesis. METHODS: We performed both single-variant and gene-based genome-wide association studies of >11,000 whole genome sequences from the Women's Health Initiative cohort to discover loci associated with dementia, with adjustment for age, ethnicity, stroke, and venous thromboembolism status. Evidence for prior evidence of association and differential gene expression in dementia-related tissues and samples was gathered for each locus. RESULTS: Our multiethnic studies identified significant associations between variants within APOE, MYH11, FZD3, SORCS3, and GOLGA8B and risk of dementia. Ten genes implicated by these loci, including MYH11, FZD3, SORCS3, and GOLGA8B, were differentially expressed in the context of Alzheimer's disease. DISCUSSION: Our association of MYH11, FZD3, SORCS3, and GOLGA8B with dementia is supported by independent functional studies in human subjects, model systems, and associations with shared risk factors for stroke and dementia.

6.
Nat Genet ; 52(9): 969-983, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32839606

RESUMO

Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set test for association using annotation information), a scalable and powerful RV association test method that effectively incorporates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we introduce 'annotation principal components', multidimensional summaries of in silico variant annotations. STAAR accounts for population structure and relatedness and is scalable for analyzing very large cohort and biobank whole-genome sequencing studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid traits in 12,316 discovery and 17,822 replication samples from the Trans-Omics for Precision Medicine Program. We discovered and replicated new RV associations, including disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 associated with low-density lipoprotein cholesterol.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética/genética , Genoma/genética , LDL-Colesterol/genética , Simulação por Computador , Estudo de Associação Genômica Ampla/métodos , Humanos , Modelos Genéticos , Anotação de Sequência Molecular/métodos , Fenótipo , Sequenciamento Completo do Genoma/métodos
7.
PLoS Genet ; 16(8): e1008947, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32833970

RESUMO

Genome-wide association studies (GWAS) have successfully identified tens of thousands of genetic variants associated with various phenotypes, but together they explain only a fraction of heritability, suggesting many variants have yet to be discovered. Recently it has been recognized that incorporating functional information of genetic variants can improve power for identifying novel loci. For example, S-PrediXcan and TWAS tested the association of predicted gene expression with phenotypes based on GWAS summary statistics by leveraging the information on genetic regulation of gene expression and found many novel loci. However, as genetic variants may have effects on more than one gene and through different mechanisms, these methods likely only capture part of the total effects of these variants. In this paper, we propose a summary statistics-based mixed effects score test (sMiST) that tests for the total effect of both the effect of the mediator by imputing genetically predicted gene expression, like S-PrediXcan and TWAS, and the direct effects of individual variants. It allows for multiple functional annotations and multiple genetically predicted mediators. It can also perform conditional association analysis while adjusting for other genetic variants (e.g., known loci for the phenotype). Extensive simulation and real data analyses demonstrate that sMiST yields p-values that agree well with those obtained from individual level data but with substantively improved computational speed. Importantly, a broad application of sMiST to GWAS is possible, as only summary statistics of genetic variant associations are required. We apply sMiST to a large-scale GWAS of colorectal cancer using summary statistics from ∼120, 000 study participants and gene expression data from the Genotype-Tissue Expression (GTEx) project. We identify several novel and secondary independent genetic loci.


Assuntos
Neoplasias Colorretais/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Neoplasias Colorretais/patologia , Biologia Computacional , Regulação Neoplásica da Expressão Gênica/genética , Variação Genética/genética , Genótipo , Humanos , Modelos Estatísticos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
8.
Stroke ; 51(8): 2454-2463, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32693751

RESUMO

BACKGROUND AND PURPOSE: Stroke is a complex disease with multiple genetic and environmental risk factors. Blacks endure a nearly 2-fold greater risk of stroke and are 2× to 3× more likely to die from stroke than European Americans. METHODS: The COMPASS (Consortium of Minority Population Genome-Wide Association Studies of Stroke) has conducted a genome-wide association meta-analysis of stroke in >22 000 individuals of African ancestry (3734 cases, 18 317 controls) from 13 cohorts. RESULTS: In meta-analyses, we identified one single nucleotide polymorphism (rs55931441) near the HNF1A gene that reached genome-wide significance (P=4.62×10-8) and an additional 29 variants with suggestive evidence of association (P<1×10-6), representing 24 unique loci. For validation, a look-up analysis for a 100 kb region flanking the COMPASS single nucleotide polymorphism was performed in SiGN (Stroke Genetics Network) Europeans, SiGN Hispanics, and METASTROKE (Europeans). Using a stringent Bonferroni correction P value of 2.08×10-3 (0.05/24 unique loci), we were able to validate associations at the HNF1A locus in both SiGN (P=8.18×10-4) and METASTROKE (P=1.72×10-3) European populations. Overall, 16 of 24 loci showed evidence for validation across multiple populations. Previous studies have reported associations between variants in the HNF1A gene and lipids, C-reactive protein, and risk of coronary artery disease and stroke. Suggestive associations with variants in the SFXN4 and TMEM108 genes represent potential novel ischemic stroke loci. CONCLUSIONS: These findings represent the most thorough investigation of genetic determinants of stroke in individuals of African descent, to date.


Assuntos
Afro-Americanos/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Acidente Vascular Cerebral/genética , Afro-Americanos/etnologia , Estudos de Coortes , Predisposição Genética para Doença/etnologia , Humanos , Acidente Vascular Cerebral/etnologia
9.
Cancer Res ; 80(18): 4004-4013, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32641412

RESUMO

Registry-based epidemiologic studies suggest associations between chronic inflammatory intestinal diseases and pancreatic ductal adenocarcinoma (PDAC). As genetic susceptibility contributes to a large proportion of chronic inflammatory intestinal diseases, we hypothesize that the genomic regions surrounding established genome-wide associated variants for these chronic inflammatory diseases are associated with PDAC. We examined the association between PDAC and genomic regions (±500 kb) surrounding established common susceptibility variants for ulcerative colitis, Crohn's disease, inflammatory bowel disease, celiac disease, chronic pancreatitis, and primary sclerosing cholangitis. We analyzed summary statistics from genome-wide association studies data for 8,384 cases and 11,955 controls of European descent from two large consortium studies using the summary data-based adaptive rank truncated product method to examine the overall association of combined genomic regions for each inflammatory disease group. Combined genomic susceptibility regions for ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis were associated with PDAC at P values < 0.05 (0.0040, 0.0057, 0.011, and 3.4 × 10-6, respectively). After excluding the 20 PDAC susceptibility regions (±500 kb) previously identified by GWAS, the genomic regions for ulcerative colitis, Crohn disease, and inflammatory bowel disease remained associated with PDAC (P = 0.0029, 0.0057, and 0.0098, respectively). Genomic regions for celiac disease (P = 0.22) and primary sclerosing cholangitis (P = 0.078) were not associated with PDAC. Our results support the hypothesis that genomic regions surrounding variants associated with inflammatory intestinal diseases, particularly, ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis are associated with PDAC. SIGNIFICANCE: The joint effects of common variants in genomic regions containing susceptibility loci for inflammatory bowel disease and chronic pancreatitis are associated with PDAC and may provide insights to understanding pancreatic cancer etiology.

10.
Circ Genom Precis Med ; 13(4): e002680, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32602732

RESUMO

BACKGROUND: We examined how expanding electrocardiographic trait genome-wide association studies to include ancestrally diverse populations, prioritize more precise phenotypic measures, and evaluate evidence for shared genetic effects enabled the detection and characterization of loci. METHODS: We decomposed 10 seconds, 12-lead electrocardiograms from 34 668 multi-ethnic participants (15% Black; 30% Hispanic/Latino) into 6 contiguous, physiologically distinct (P wave, PR segment, QRS interval, ST segment, T wave, and TP segment) and 2 composite, conventional (PR interval and QT interval) interval scale traits and conducted multivariable-adjusted, trait-specific univariate genome-wide association studies using 1000-G imputed single-nucleotide polymorphisms. Evidence of shared genetic effects was evaluated by aggregating meta-analyzed univariate results across the 6 continuous electrocardiographic traits using the combined phenotype adaptive sum of powered scores test. RESULTS: We identified 6 novels (CD36, PITX2, EMB, ZNF592, YPEL2, and BC043580) and 87 known loci (adaptive sum of powered score test P<5×10-9). Lead single-nucleotide polymorphism rs3211938 at CD36 was common in Blacks (minor allele frequency=10%), near monomorphic in European Americans, and had effects on the QT interval and TP segment that ranked among the largest reported to date for common variants. The other 5 novel loci were observed when evaluating the contiguous but not the composite electrocardiographic traits. Combined phenotype testing did not identify novel electrocardiographic loci unapparent using traditional univariate approaches, although this approach did assist with the characterization of known loci. CONCLUSIONS: Despite including one-third as many participants as published electrocardiographic trait genome-wide association studies, our study identified 6 novel loci, emphasizing the importance of ancestral diversity and phenotype resolution in this era of ever-growing genome-wide association studies.

11.
Circ Genom Precis Med ; 13(4): e002772, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32510982

RESUMO

BACKGROUND: Alcohol intake influences plasma lipid levels, and such effects may be moderated by genetic variants. We aimed to characterize the role of aggregated rare and low-frequency protein-coding variants in gene by alcohol consumption interactions associated with fasting plasma lipid levels. METHODS: In the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, fasting plasma triglycerides and high- and low-density lipoprotein cholesterol were measured in 34 153 individuals with European ancestry from 5 discovery studies and 32 277 individuals from 6 replication studies. Rare and low-frequency functional protein-coding variants (minor allele frequency, ≤5%) measured by an exome array were aggregated by genes and evaluated by a gene-environment interaction test and a joint test of genetic main and gene-environment interaction effects. Two dichotomous self-reported alcohol consumption variables, current drinker, defined as any recurrent drinking behavior, and regular drinker, defined as the subset of current drinkers who consume at least 2 drinks per week, were considered. RESULTS: We discovered and replicated 21 gene-lipid associations at 13 known lipid loci through the joint test. Eight loci (PCSK9, LPA, LPL, LIPG, ANGPTL4, APOB, APOC3, and CD300LG) remained significant after conditioning on the common index single-nucleotide polymorphism identified by previous genome-wide association studies, suggesting an independent role for rare and low-frequency variants at these loci. One significant gene-alcohol interaction on triglycerides in a novel locus was significantly discovered (P=6.65×10-6 for the interaction test) and replicated at nominal significance level (P=0.013) in SMC5. CONCLUSIONS: In conclusion, this study applied new gene-based statistical approaches and suggested that rare and low-frequency genetic variants interacted with alcohol consumption on lipid levels.

12.
Cancer Epidemiol Biomarkers Prev ; 29(9): 1784-1791, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32546605

RESUMO

BACKGROUND: Obesity and diabetes are major modifiable risk factors for pancreatic cancer. Interactions between genetic variants and diabetes/obesity have not previously been comprehensively investigated in pancreatic cancer at the genome-wide level. METHODS: We conducted a gene-environment interaction (GxE) analysis including 8,255 cases and 11,900 controls from four pancreatic cancer genome-wide association study (GWAS) datasets (Pancreatic Cancer Cohort Consortium I-III and Pancreatic Cancer Case Control Consortium). Obesity (body mass index ≥30 kg/m2) and diabetes (duration ≥3 years) were the environmental variables of interest. Approximately 870,000 SNPs (minor allele frequency ≥0.005, genotyped in at least one dataset) were analyzed. Case-control (CC), case-only (CO), and joint-effect test methods were used for SNP-level GxE analysis. As a complementary approach, gene-based GxE analysis was also performed. Age, sex, study site, and principal components accounting for population substructure were included as covariates. Meta-analysis was applied to combine individual GWAS summary statistics. RESULTS: No genome-wide significant interactions (departures from a log-additive odds model) with diabetes or obesity were detected at the SNP level by the CC or CO approaches. The joint-effect test detected numerous genome-wide significant GxE signals in the GWAS main effects top hit regions, but the significance diminished after adjusting for the GWAS top hits. In the gene-based analysis, a significant interaction of diabetes with variants in the FAM63A (family with sequence similarity 63 member A) gene (significance threshold P < 1.25 × 10-6) was observed in the meta-analysis (P GxE = 1.2 ×10-6, P Joint = 4.2 ×10-7). CONCLUSIONS: This analysis did not find significant GxE interactions at the SNP level but found one significant interaction with diabetes at the gene level. A larger sample size might unveil additional genetic factors via GxE scans. IMPACT: This study may contribute to discovering the mechanism of diabetes-associated pancreatic cancer.

13.
PLoS One ; 15(5): e0230815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379818

RESUMO

Smoking is a potentially causal behavioral risk factor for type 2 diabetes (T2D), but not all smokers develop T2D. It is unknown whether genetic factors partially explain this variation. We performed genome-environment-wide interaction studies to identify loci exhibiting potential interaction with baseline smoking status (ever vs. never) on incident T2D and fasting glucose (FG). Analyses were performed in participants of European (EA) and African ancestry (AA) separately. Discovery analyses were conducted using genotype data from the 50,000-single-nucleotide polymorphism (SNP) ITMAT-Broad-CARe (IBC) array in 5 cohorts from from the Candidate Gene Association Resource Consortium (n = 23,189). Replication was performed in up to 16 studies from the Cohorts for Heart Aging Research in Genomic Epidemiology Consortium (n = 74,584). In meta-analysis of discovery and replication estimates, 5 SNPs met at least one criterion for potential interaction with smoking on incident T2D at p<1x10-7 (adjusted for multiple hypothesis-testing with the IBC array). Two SNPs had significant joint effects in the overall model and significant main effects only in one smoking stratum: rs140637 (FBN1) in AA individuals had a significant main effect only among smokers, and rs1444261 (closest gene C2orf63) in EA individuals had a significant main effect only among nonsmokers. Three additional SNPs were identified as having potential interaction by exhibiting a significant main effects only in smokers: rs1801232 (CUBN) in AA individuals, rs12243326 (TCF7L2) in EA individuals, and rs4132670 (TCF7L2) in EA individuals. No SNP met significance for potential interaction with smoking on baseline FG. The identification of these loci provides evidence for genetic interactions with smoking exposure that may explain some of the heterogeneity in the association between smoking and T2D.


Assuntos
Glicemia/análise , Fumar Cigarros/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Jejum/sangue , Genótipo , Adulto , Grupo com Ancestrais do Continente Africano/genética , Idoso , Fumar Cigarros/etnologia , Estudos de Coortes , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etnologia , Grupo com Ancestrais do Continente Europeu/genética , Estudos de Viabilidade , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Risco
14.
Cancer Epidemiol Biomarkers Prev ; 29(7): 1501-1508, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32439797

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with few known risk factors and biomarkers. Several blood protein biomarkers have been linked to PDAC in previous studies, but these studies have assessed only a limited number of biomarkers, usually in small samples. In this study, we evaluated associations of circulating protein levels and PDAC risk using genetic instruments. METHODS: To identify novel circulating protein biomarkers of PDAC, we studied 8,280 cases and 6,728 controls of European descent from the Pancreatic Cancer Cohort Consortium and the Pancreatic Cancer Case-Control Consortium, using genetic instruments of protein quantitative trait loci. RESULTS: We observed associations between predicted concentrations of 38 proteins and PDAC risk at an FDR of < 0.05, including 23 of those proteins that showed an association even after Bonferroni correction. These include the protein encoded by ABO, which has been implicated as a potential target gene of PDAC risk variant. Eight of the identified proteins (LMA2L, TM11D, IP-10, ADH1B, STOM, TENC1, DOCK9, and CRBB2) were associated with PDAC risk after adjusting for previously reported PDAC risk variants (OR ranged from 0.79 to 1.52). Pathway enrichment analysis showed that the encoding genes for implicated proteins were significantly enriched in cancer-related pathways, such as STAT3 and IL15 production. CONCLUSIONS: We identified 38 candidates of protein biomarkers for PDAC risk. IMPACT: This study identifies novel protein biomarker candidates for PDAC, which if validated by additional studies, may contribute to the etiologic understanding of PDAC development.

15.
BMC Genomics ; 21(1): 228, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171239

RESUMO

BACKGROUND: Quantitative red blood cell (RBC) traits are highly polygenic clinically relevant traits, with approximately 500 reported GWAS loci. The majority of RBC trait GWAS have been performed in European- or East Asian-ancestry populations, despite evidence that rare or ancestry-specific variation contributes substantially to RBC trait heritability. Recently developed combined-phenotype methods which leverage genetic trait correlation to improve statistical power have not yet been applied to these traits. Here we leveraged correlation of seven quantitative RBC traits in performing a combined-phenotype analysis in a multi-ethnic study population. RESULTS: We used the adaptive sum of powered scores (aSPU) test to assess combined-phenotype associations between ~ 21 million SNPs and seven RBC traits in a multi-ethnic population (maximum n = 67,885 participants; 24% African American, 30% Hispanic/Latino, and 43% European American; 76% female). Thirty-nine loci in our multi-ethnic population contained at least one significant association signal (p < 5E-9), with lead SNPs at nine loci significantly associated with three or more RBC traits. A majority of the lead SNPs were common (MAF > 5%) across all ancestral populations. Nineteen additional independent association signals were identified at seven known loci (HFE, KIT, HBS1L/MYB, CITED2/FILNC1, ABO, HBA1/2, and PLIN4/5). For example, the HBA1/2 locus contained 14 conditionally independent association signals, 11 of which were previously unreported and are specific to African and Amerindian ancestries. One variant in this region was common in all ancestries, but exhibited a narrower LD block in African Americans than European Americans or Hispanics/Latinos. GTEx eQTL analysis of all independent lead SNPs yielded 31 significant associations in relevant tissues, over half of which were not at the gene immediately proximal to the lead SNP. CONCLUSION: This work identified seven loci containing multiple independent association signals for RBC traits using a combined-phenotype approach, which may improve discovery in genetically correlated traits. Highly complex genetic architecture at the HBA1/2 locus was only revealed by the inclusion of African Americans and Hispanics/Latinos, underscoring the continued importance of expanding large GWAS to include ancestrally diverse populations.


Assuntos
Afro-Americanos/genética , Eritrócitos/metabolismo , Grupo com Ancestrais do Continente Europeu/genética , Estudo de Associação Genômica Ampla/métodos , Hispano-Americanos/genética , Característica Quantitativa Herdável , Feminino , Genética Populacional , Humanos , Masculino , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Estados Unidos/etnologia
16.
JAMA Netw Open ; 3(2): e200023, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32101305

RESUMO

Importance: Leukocyte telomere length (LTL) is a trait associated with risk of cardiovascular disease and cancer, the 2 major disease categories that largely define longevity in the United States. However, it remains unclear whether LTL is associated with the human life span. Objective: To examine whether LTL is associated with the life span of contemporary humans. Design, Setting, and Participants: This cohort study included 3259 adults of European ancestry from the Cardiovascular Health Study (CHS), Framingham Heart Study (FHS), and Women's Health Initiative (WHI). Leukocyte telomere length was measured in 1992 and 1997 in the CHS, from 1995 to 1998 in the FHS, and from 1993 to 1998 in the WHI. Data analysis was conducted from February 2017 to December 2019. Main Outcomes and Measures: Death and LTL, measured by Southern blots of the terminal restriction fragments, were the main outcomes. Cause of death was adjudicated by end point committees. Results: The analyzed sample included 3259 participants (2342 [71.9%] women), with a median (range) age of 69.0 (50.0-98.0) years at blood collection. The median (range) follow-up until death was 10.9 (0.2-23.0) years in CHS, 19.7 (3.4-23.0) years in FHS, and 16.6 (0.5-20.0) years in WHI. During follow-up, there were 1525 deaths (482 [31.6%] of cardiovascular disease; 373 [24.5%] of cancer, and 670 [43.9%] of other or unknown causes). Short LTL, expressed in residual LTL, was associated with increased mortality risk. Overall, the hazard ratio for all-cause mortality for a 1-kilobase decrease in LTL was 1.34 (95% CI, 1.21-1.47). This association was stronger for noncancer causes of death (cardiovascular death: hazard ratio, 1.28; 95% CI, 1.08-1.52; cancer: hazard ratio, 1.13; 95% CI, 0.93-1.36; and other causes: hazard ratio, 1.53; 95% CI, 1.32-1.77). Conclusions and Relevance: The results of this study indicate that LTL is associated with a natural life span limit in contemporary humans.


Assuntos
Leucócitos/fisiologia , Expectativa de Vida , Telômero/genética , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/mortalidade , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neoplasias/mortalidade
17.
PLoS Genet ; 15(12): e1008500, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31869403

RESUMO

Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.


Assuntos
Afro-Americanos/genética , Hispano-Americanos/genética , Medicina de Precisão/métodos , Sequenciamento Completo do Genoma/métodos , Globinas beta/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Estados Unidos
18.
Cell ; 179(4): 984-1002.e36, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675503

RESUMO

Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.


Assuntos
Grupo com Ancestrais do Continente Africano/genética , Predisposição Genética para Doença , Genoma Humano/genética , Genômica , Feminino , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Uganda/epidemiologia , Sequenciamento Completo do Genoma
19.
Nat Genet ; 51(11): 1574-1579, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31676865

RESUMO

Venous thromboembolism is a significant cause of mortality1, yet its genetic determinants are incompletely defined. We performed a discovery genome-wide association study in the Million Veteran Program and UK Biobank, with testing of approximately 13 million DNA sequence variants for association with venous thromboembolism (26,066 cases and 624,053 controls) and meta-analyzed both studies, followed by independent replication with up to 17,672 venous thromboembolism cases and 167,295 controls. We identified 22 previously unknown loci, bringing the total number of venous thromboembolism-associated loci to 33, and subsequently fine-mapped these associations. We developed a genome-wide polygenic risk score for venous thromboembolism that identifies 5% of the population at an equivalent incident venous thromboembolism risk to carriers of the established factor V Leiden p.R506Q and prothrombin G20210A mutations. Our data provide mechanistic insights into the genetic epidemiology of venous thromboembolism and suggest a greater overlap among venous and arterial cardiovascular disease than previously thought.


Assuntos
Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Doenças Vasculares/genética , Tromboembolia Venosa/genética , Idoso , Animais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Inibidor 1 de Ativador de Plasminogênio/genética , Fatores de Risco , Reino Unido/epidemiologia , Doenças Vasculares/epidemiologia , Doenças Vasculares/patologia , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/patologia
20.
Am J Hum Genet ; 105(4): 706-718, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564435

RESUMO

Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (-0.88% in hemizygous males, -0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; -0.98% in hemizygous males, -0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.


Assuntos
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Variação Genética , Hemoglobina A Glicada/genética , Grupos Populacionais/genética , Medicina de Precisão , Estudos de Coortes , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA