Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
J Synchrotron Radiat ; 25(Pt 4): 989-997, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979160


A setup for fluorescence-detected X-ray absorption spectroscopy (XAS) with sub-second time resolution has been developed. This technique allows chemical speciation of low-concentrated materials embedded in highly absorbing matrices, which cannot be studied using transmission XAS. Using this setup, the reactivity of 1.5 wt% Pt/CeO2 catalyst was studied with 100 ms resolution during periodic cycling in CO- and oxygen-containing atmospheres in a plug-flow reactor. Measurements were performed at the Pt L3- and Ce L3-edges. The reactivity of platinum and cerium demonstrated a strong correlation. The oxidation of the catalyst starts on the ceria support helping the oxidation of platinum nanoparticles. The new time-resolved XAS setup can be applied to various systems, capable of reproducible cycling between different states triggered by gas atmosphere, light, temperature, etc. It opens up new perspectives for mechanistic studies on automotive catalysts, selective oxidation catalysts and photocatalysts.

J Phys Chem Lett ; 8(1): 102-108, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27936758


X-ray photoelectron spectroscopy has been employed for the qualitative and quantitative characterization of both model and real catalytic surfaces. Recent progress in the detection of photoelectrons has enabled the acquisition of spectra at pressures up to a few tens of millibars. Although reducing the pressure gap represents a remarkable advantage for catalysis, active sites may be short-lived or hidden in the majority of spectator species. Time-resolved experiments, conducted under transient conditions, are a suitable strategy for discriminating between active sites and spectators. In the present work, we characterized the surface of a Pt/CeO2 powder catalyst at 1.0 mbar of a reacting mixture of carbon monoxide and oxygen and, by means of time resolution, identified short-lived active species. We replaced oxygen with nitrogen in the reaction mixture while fast-detecting the core level peaks of cerium. The results indicate that active Ce3+ sites form transiently at the surface when the oxygen is switched off. Analysis of the depth profile shows that Ce3+ ions are located at the ceria surface. The same experiment, performed on platinum-free ceria, reveals negligible reduction, indicating that platinum boosts the formation of Ce3+ active sites at the interface.

Angew Chem Int Ed Engl ; 54(30): 8728-31, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26069026


Identification of active species and the rate-determining reaction steps are crucial for optimizing the performance of oxygen-storage materials, which play an important role in catalysts lowering automotive emissions, as electrode materials for fuel cells, and as antioxidants in biomedicine. We demonstrated that active Ce(3+) species in a ceria-supported platinum catalyst during CO oxidation are short-lived and therefore cannot be observed under steady-state conditions. Using time-resolved resonant X-ray emission spectroscopy, we quantitatively correlated the initial rate of Ce(3+) formation under transient conditions to the overall rate of CO oxidation under steady-state conditions and showed that ceria reduction is a kinetically relevant step in CO oxidation, whereas a fraction of Ce(3+) was present as spectators. This approach can be applied to various catalytic processes involving oxygen-storage materials and reducible oxides to distinguish between redox and nonredox catalytic mechanisms.