Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(46): 29549-29557, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30457618

RESUMO

We performed a density functional theory (DFT) investigation of the mechanisms of oxide growth at Al(100), Al(110) and Al(111) up to 1 monolayer (ML) coverage of O-atoms with 0.125 ML increments. We found that the surface binding site preferences of O-atoms are largely affected by the presence of neighboring O-atoms. Based on this we constructed two oxide growth models: the formation of clusters that evolve to stripes with increasing coverage and the formation of a more homogeneous distribution of O-atoms. While the former model is characterized by a lower symmetry of distribution of O-atoms at the surfaces, the latter corresponds to higher symmetries. We found that the prevalence of each oxide growth mode depends on the coverage of O-atoms and that this dependency is different for each surface. For Al(100) and Al(110), up to coverages of 1 ML the oxide grows preferably via the formation of clusters that evolve to stripes with increasing coverage, while for Al(111) the stripes and clusters are the preferred growth mode for coverages up to 0.375 ML, beyond which the homogeneous growth mode is energetically favored. The calculated Al-O pair distribution functions show that the formation of clusters and stripes leads to shorter Al-O bond lengths when compared to the homogeneous growth. The oxides formed at Al(100) and Al(110) have Al-O bond lengths and geometries typical of the shorter bonds of α-alumina while at Al(111) the bond lengths are typical of γ-alumina and ß-alumina. These results suggest that for low coverages, the oxides formed at Al(100) and Al(110) are resemblant of defective α-alumina while the oxide formed at Al(111) is similar to less disordered γ-alumina and ß-alumina. For Al(111), the small energy difference between the growth of clusters and stripes and homogeneous growth does not exclude the coexistence of both growth modes; this could lead to the formation of a defective or amorphous oxide.

2.
Data Brief ; 20: 1018-1022, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30225316

RESUMO

The article presents ab initio calculated properties (total energies, lattice parameters, and elastic properties) for the complete set of 1540 end-member compounds within a 4-sublattice model of Fe-based solid solutions. The compounds are symmetry-distinct cases of integral site occupancy for superstructure Y (space group #227, type LiMgPdSn) chosen to represent the ordered arrangements of solvent atoms (Fe), solute atoms (Fe, Mg, Al, Si, P, S, Mn, Ni, Cu), and vacancies (Va) on the sites of a body-centered cubic lattice. The model is employed in the research article "Ab-initio based search for late blooming phase compositions in iron alloys" (Hosseinzadeh et al., 2018) [1].

3.
J Chem Phys ; 148(24): 244503, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960348

RESUMO

Self- and impurity diffusion coefficients are assessed in the liquid nickel system by the fundamental ab initio molecular dynamics approach. The impurity diffusion coefficients in the Ni-X systems (X=C, Co, N, Nb, Ta, Ti, W) are mostly not available in the current literature. The simulations are performed at four temperatures, in the range from 1903 to 2303 K, which allows to extract activation energies and frequency factors for the temperature dependent diffusion coefficient assuming an Arrhenius-type behavior in the liquid. In addition to the temperature dependence, the concentration-dependent impurity diffusion was investigated for the Ni-Co system. The data are of relevance for the development of the state-of-the art Ni-based superalloys and alternative binder systems in cemented carbides. The obtained theoretical results are in very good agreement with the limited experimental data for the diffusion in liquid Ni systems.

4.
Chemphyschem ; 19(17): 2159-2168, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29797487

RESUMO

Understanding the surface site preference for single adsorbates, the interactions between adsorbates, how these interactions affect surface site specificity in adsorption and perturb the electronic states of surfaces is important for rationalizing the structure of interfaces and the growth of surface products. Herein, using density functional theory (DFT) calculations, we investigated the adsorption of H2 S, HS and, S onto Cu(110). The surface site specificity observed for single adsorbates can be largely affected by the presence of other adsorbates, especially S that can affect the adsorption of other species even at distances of 13 Å. The large supercell employed with a surface periodicity of (6×6) allowed us to safely use the Helmholtz method for the determination of the dipole of the surface-adsorbate complex at low adsorbate coverages. We found that the surface perturbation induced by S can be explained by the charge transfer model, H2 S leads to a perturbation of the surface that arises mostly from Pauli exclusion effects, whereas HS shows a mix of charge transfer and Pauli exclusion effects. These effects have a large contribution to the long range adsorbate-adsorbate interactions observed. Further support for the long range adsorbate-adsorbate interactions are the values of the adsorption energies of adsorbate pairs that are larger than the sum of the adsorption energies of the single adsorbates that constitute the pair. This happens even for large distances and thus goes beyond the H-bond contribution for the H-bond capable adsorbate pairs. Exploiting this knowledge we investigated two models for describing the first stages of growth of a layer of S-atoms at the surface: the formation of islands versus the formation of more homogeneous surface distributions of S-atoms. We found that for coverages lower than 0.5 ML the S-atoms prefer to cluster as islands that evolve to stripes along the [1 1‾ 0] direction with increasing coverage. At 0.5 ML a homogeneous distribution of S-atoms becomes more stable than the formation of stripes. For the coverage equivalent to 1 ML, the formation of two half-monolayers of S-atoms that disrupt the Cu-Cu bonds between the first and second layer is more favorable than the formation of 1 ML homogeneous coverage of S-atoms. Here the S-Cu bond distances and geometries are reminiscent of pyrite, covellite, and to some extent chalcocite. The small energy difference of ≈0.1 eV that exists between this structure and the formation of 1 ML suggests that in a real system at finite temperature both structures may coexist leading to a structure with even lower symmetry.

5.
Ultrasonics ; 87: 44-47, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29448051

RESUMO

High temperature crystal elasticity constants for face centred cubic austenite are important for interpreting the ultrasonic properties of iron and steels but cannot be determined by normal single crystal methods. Values of these constants have recently been calculated using an ab-initio approach and the present work was carried out to test their applicability using laser-ultrasonic measurements. Steel samples having a known texture were examined at temperatures between 800 °C and 1100 °C to measure the velocity of longitudinal P-waves which were found to be in good agreement with modelled values.

6.
Phys Chem Chem Phys ; 19(11): 8111-8120, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28267157

RESUMO

We performed a density functional theory (DFT) investigation of the molecular and dissociative adsorption of H2O and H2S at perfect and defective Cu(110) surfaces described using supercells with c(6 × 6) periodicity. The defective surface consists of a terrace surrounded by pits. We found considerable differences in adsorption modes and energies for H2O and H2S. At the defective Cu(110) surface, monomers of H2O and H2S preferentially adsorb at the terrace site and molecular adsorption of H2O is significantly more favorable than that of H2S. For dissociative adsorption however, the sulfur species are considerably more stable than the oxygen species. For monolayer (ML) coverages, there are small differences in the molecular adsorption energies for H2O and H2S. However, for the formation of 1 ML of HO and 1 ML of HS from 1 ML of H2O and 1 ML of H2S, respectively, with the release of H2(g), the differences are very large. The formation of 1 ML HO at the perfect Cu(110) surface is endoergic, while at the defective Cu(110) surface it is exoergic by -0.6 eV. For high coverages, H2S forms stacked half-monolayers that interact with each other via a complex hydrogen bond network with a strength per H2S molecule of -0.140 eV per H2S and -0.120 eV per H2S for H2S located in the underlayer and overlayer, respectively. The large distances between hydrogen bonded H2S molecules explain the preference for the formation of the two stacked half-monolayers of H2S instead of a single monolayer as it happens with H2O. Additionally, the formation of 1 ML of HS does not occur because of the spontaneous splitting of some H-S bonds resulting in surface bound HS and S and H2S molecules. Extensive surface reconstruction and relaxation accompanies adsorption of the sulfur adsorbates. Such reconstructions with outwards pull of Cu atoms can be at the origin of the weak adhesion of sulfide films that explains the release of CuS particles from copper sulfide films at copper surfaces. Overall, the surface defects here investigated induce non-linear effects in the molecular and dissociative adsorption energies of different O and S adsorbates.

7.
Dalton Trans ; 46(2): 529-538, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27966719

RESUMO

The electronic structure and chemical bonding of Cu(i) compounds with O and/or H are investigated using ab initio calculations based on density functional theory. A hybrid functional PBE0 is employed, which accurately reproduces an experimental band gap of cuprite Cu2O. Cuprous hydroxide CuOH (cuprice) is found to be an indirect band gap semiconductor. Depending on the bond network configuration of CuOH, its band gap is found to vary between 2.73 eV and 3.03 eV. The presence of hydrogen in CuOH has little effect on the character of Cu-O bonds, as compared to Cu2O, but lowers the energy levels of the occupied states upon O-H bond formation. The bonding charge density and electron localization function calculations reveal that a closed-shell Cu-Cu interaction takes place in Cu2O and CuOH between the neighbouring Cu cations belonging to different bond networks. Besides, three structures of cuprous hydride CuH are investigated. We find that the halite structure of CuH can be stabilized at high pressure (above 32 GPa) while wurtzite is the most stable structure of CuH at ambient pressure. The H-H interaction contributes to the dynamical stabilization of the halite structure. The wurtzite and sphalerite structures of CuH are predicted to be semiconducting with small band gaps, while the halite structure is calculated to be metallic.

8.
Sci Rep ; 6: 24234, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27086752

RESUMO

One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

9.
J Comput Chem ; 37(9): 787-94, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26515122

RESUMO

We investigated the performance of the density functional theory (DFT) functionals PBE, PBE0, M06, and M06-L for describing the molecular and dissociative adsorption of O2 onto pure and doped Al(111) surfaces. Adsorption of O2 was studied at the perfect Al(111) surface and compared with the case where an additional Al atom was present as an adatom. Additionally, we studied how these functionals perform when different dopants are present at the Al(111) surface in two distinct geometries: as an adatom or as a substitutional atom replacing an Al atom. The performance of the different functionals is greatly affected by the surface geometry. The inclusion of Hartree-Fock exchange in the functional leads to slight differences in adsorption energies for molecular adsorption of O2 . These differences become very pronounced for dissociative adsorption, with the hybrids PBE0 and M06 predicting more exergonic adsorption than PBE and M06-L. Furthermore, PBE0 and M06 predicted trends in adsorption energies for defective and perfect surfaces which are in line with the experimental knowledge of the effects of surface defects in adsorption energies. The predictions of the non-hybrids PBE and M06-L point in the opposite direction. The analysis of the contributions of the van der Waals (vdW) forces to the adsorption energies reveals that the PBE and PBE0 functionals have similar difficulties in describing vdW interactions for molecular adsorption of O2 while the M06 functional can give a description of these forces with an accuracy which is at least similar to that of the correction of the D3 type.

10.
Inorg Chem ; 54(18): 8969-77, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26335828

RESUMO

Using density functional theory (DFT) and a graph theory based approach, we investigated the topology of bond network in CuOH(s) (cuprice) considering only symmetry-distinct structures. In parallel, we conducted the synthesis and X-ray diffraction characterization of the compound and used the combined theoretical-experimental effort to validate the lowest energy structure obtained with DFT. The ground-state structure of CuOH(s) consists of compact trilayers of CuOH connected to each other via hydrogen bonds, where the inner layer of each trilayer is composed entirely of Cu atoms. Each trilayer is a dense fabric made of two interlocked arrays of polymer [CuOH]n chains. This structure corresponds to an antiferroelectric configuration where the dipole moments of CuOH molecules belonging to adjacent arrays are antiparallel and are arranged in the same way as the water molecules in ice-VIII. It is shown that a collective electrostatic interaction is the main driving force for the cation ordering while the local atomic configuration is maintained. These findings and the possibility of synthesizing exfoliated two-dimensional cuprice are important for some technological applications.

11.
Phys Chem Chem Phys ; 17(3): 1667-79, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25464123

RESUMO

Using density functional theory (DFT) with the PBE0 density functional we investigated the role of surface dopants in the molecular and dissociative adsorption of O2 onto Al clusters of types Al50, Al50Alad, Al50X and Al49X, where X represents a dopant atom of the following elements Si, Mg, Cu, Sc, Zr, and Ti. Each dopant atom was placed on the Al(111) surface as an adatom or as a substitutional atom, in the last case replacing a surface Al atom. We found that for the same dopant geometry, the closer is the ionization energy of the dopant element to that of elemental Al, the more exothermic is the dissociative adsorption of O2 and the stronger are the bonds between the resulting O atoms and the surface. Additionally we show that the Mulliken concept of electronegativity can be applied in the prediction of the dissociative adsorption energy of O2 on the doped surfaces. The Mulliken modified second-stage electronegativity of the dopant atom is proportional to the exothermicity of the dissociative adsorption of O2. For the same dopant element in an adatom position the dissociation of O2 is more exothermic when compared to the case where the dopant occupies a substitutional position. These observations are discussed in view of the overlap population densities of states (OPDOS) computed as the overlap between the electronic states of the adsorbate O atoms and the clusters. It is shown that a more covalent character in the bonding between the Al surface and the dopant atom causes a more exothermic dissociation of O2 and stronger bonding with the O atoms when compared to a more ionic character in the bonding between the dopant and the Al surface. The extent of the adsorption site reconstruction is dopant atom dependent and is an important parameter for determining the mode of adsorption, adsorption energy and electronic structure of the product of O2 adsorption. The PBE0 functional could predict the existence of the O2 molecular adsorption product for many of the cases investigated here.

12.
Dalton Trans ; 42(26): 9585-94, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23673918

RESUMO

Experimental studies have been performed to obtain the unknown cuprous hydroxide compound, which has recently been predicted theoretically (P. A. Korzhavyi et. al., Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 686-689) to be metastable in a solid form. The reduction of Cu(2+) with ferrous ethylenediamine tetraacetate (EDTA) results in the formation of a yellow powder precipitate whose composition corresponds to CuOH × H2O as probed by Fourier Transform Infrared Spectroscopy (FTIR) and cryogenic X-ray Photoelectron Spectroscopy (XPS). A similar compound has been found on the surface of Cu-CuH powder stored in water, as detected by XPS. The reduction of Cu(2+) to Cu(+) with free radicals in aqueous solutions results in a Cu2O precipitate as the final product, while the formation of the yellow cuprous hydroxide colloids may be an intermediate step. Our studies reveal that cuprous hydroxide does exist in a solid form and most likely has a hydrated form, CuOH × H2O.


Assuntos
Cobre/química , Hidróxidos/química , Tamanho da Partícula , Propriedades de Superfície
13.
Proc Natl Acad Sci U S A ; 109(3): 686-9, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22219370

RESUMO

New important applications of copper metal, e.g., in the areas of hydrogen production, fuel cell operation, and spent nuclear fuel disposal, require accurate knowledge of the physical and chemical properties of stable and metastable copper compounds. Among the copper(I) compounds with oxygen and hydrogen, cuprous oxide Cu(2)O is the only one stable and the best studied. Other such compounds are less known (CuH) or totally unknown (CuOH) due to their instability relative to the oxide. Here we combine quantum-mechanical calculations with experimental studies to search for possible compounds of monovalent copper. Cuprous hydride (CuH) and cuprous hydroxide (CuOH) are proved to exist in solid form. We establish the chemical and physical properties of these compounds, thereby filling the existing gaps in our understanding of hydrogen- and oxygen-related phenomena in Cu metal.

14.
Nat Mater ; 3(4): 225-8, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15034561

RESUMO

The physics and chemistry of the actinide elements form the scientific basis for rational handling of nuclear materials. In recent experiments, most unexpectedly, plutonium dioxide has been found to react with water to form higher oxides up to PuO(2.27), whereas PuO(2) had always been thought to be the highest stable oxide of plutonium. We perform a theoretical analysis of this complicated situation on the basis of total energies calculated within density functional theory combined with well-established thermodynamic data. The reactions of PuO(2) with either O(2) or H(2)O to form PuO(2+delta) are calculated to be endothermic: that is, in order to occur they require a supply of energy. However, our calculations show that PuO(2+delta) can be formed, as an intermediate product, by reactions with the products of radiolysis of water, such as H(2)O(2).


Assuntos
Oxigênio/química , Plutônio/química , Resíduos Radioativos , Modelos Químicos , Oxigênio/metabolismo , Plutônio/metabolismo , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...